Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: xdydx+yx+xy cot x=0, (x0)x\frac {dy}{dx}+y-x+xy \ cot\ x=0,\ (x≠0)

Answer

xdydx\frac {dy}{dx} + y - x + xy cot x = 0

⇒xdydx\frac {dy}{dx}+y(1 + xcot x) = x

dydx\frac {dy}{dx} + (1x\frac 1x + cot x)y = 1

This equation is a linear differential equation of the form:

dydx\frac {dy}{dx} + py = Q (where p = 1x\frac 1x + cotx and Q = 1)

Now, I.F. = e∫pdx = e(1x+cot x)dxe^{∫(\frac 1x+cot\ x)dx} = elog x+log(sin x) = elog(xsin x) = xsin x.

The general solution of the given differential equation is given by the relation,

y(I.F.) = ∫(Q×I.F.)dx+C

⇒y(xsin x) = ∫(1×xsin x)dx + C

⇒y(xsin x) = ∫(xsin x)dx + C

⇒y(xsin x) = x∫sin x dx-∫[ddx\frac {d}{dx}(x).∫sin xdx] + C

⇒y(xsin x) = x(-cos x)-∫1.(-cos x)dx + C

⇒y(xsin x) = -xcos x + sinx + C

y=y = -xcos xxsin x\frac {xcos\ x}{xsin\ x} + Sin xxsin x\frac {Sin \ x}{xsin\ x} + Cxsin x\frac {C}{xsin\ x}

y=y = - cot xcot\ x + 1x\frac 1x + Cxsin x\frac {C}{xsin\ x}