Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: xdydx+2y=x2log xx\frac {dy}{dx}+2y=x^2log\ x

Answer

The given differential equation is:

xdydx\frac {dy}{dx}+2y = x2logx

dydx\frac {dy}{dx}+2xy\frac {2}{xy} = xlog x

This equation is in the form of a linear differential equation as:

dydx\frac {dy}{dx}+py = Q(where p=2x\frac 2x and Q=xlog x)
∫pdx = 2∫1x\frac 1x dx = 2log x

Now, I.F. = e∫pdx = e2logx = elogx2e^{log x^2} = x2

The general solution of the given differential equation is given by the relation,

y(I.F.) = ∫(Q×I.F.)dx + C

⇒y.x2 = ∫(xlog x . x2)dx + C

⇒x2y = ∫(x3log x)dx + C

⇒x2y = logx.∫x3dx - ∫[ddx\frac {d}{dx}(logx).∫x3dx]dx + C

⇒x2y = log x . x44\frac {x^4}{4}-∫(1x\frac {1}{x}.x44\frac {x^4}{4})dx + C

⇒x2y = x4log x44\frac {x^4}{4}-14\frac {1}{4}∫x3dx + C

⇒x2y = x4logx44\frac {x^4}{4}-14\frac {1}{4}. x44\frac {x^4}{4} + C

⇒x2y = 116\frac {1}{16}x4(4logx-1) + C

⇒y = 116\frac {1}{16}x2(4log x-1) + Cx-2