Solveeit Logo

Question

Question: Find the general solution of the equation $\sin^4 x + \cos^4 x = \sin x \cos x$...

Find the general solution of the equation sin4x+cos4x=sinxcosx\sin^4 x + \cos^4 x = \sin x \cos x

A

n\pi + \frac{\pi}{4}

B

n\pi - \frac{\pi}{4}

C

2n\pi + \frac{\pi}{4}

D

2n\pi - \frac{\pi}{4}

Answer

n\pi + \frac{\pi}{4}

Explanation

Solution

The equation can be rewritten as 12sin2xcos2x=sinxcosx1 - 2\sin^2 x \cos^2 x = \sin x \cos x. Using sinxcosx=12sin(2x)\sin x \cos x = \frac{1}{2}\sin(2x) and sin2xcos2x=14sin2(2x)\sin^2 x \cos^2 x = \frac{1}{4}\sin^2(2x), we get 112sin2(2x)=12sin(2x)1 - \frac{1}{2}\sin^2(2x) = \frac{1}{2}\sin(2x). This simplifies to sin2(2x)+sin(2x)2=0\sin^2(2x) + \sin(2x) - 2 = 0, which factors as (sin(2x)+2)(sin(2x)1)=0(\sin(2x)+2)(\sin(2x)-1)=0. Since sin(2x)2\sin(2x) \neq -2, we have sin(2x)=1\sin(2x) = 1. The general solution is 2x=2nπ+π22x = 2n\pi + \frac{\pi}{2}, thus x=nπ+π4x = n\pi + \frac{\pi}{4}.