Solveeit Logo

Question

Question: Find the general solution of the equation \(2\cos 2x=3.2{{\cos }^{2}}x-4\)....

Find the general solution of the equation 2cos2x=3.2cos2x42\cos 2x=3.2{{\cos }^{2}}x-4.

Explanation

Solution

Here we are going to simplify the given equation using Trigonometric formulas and convert it into some simple formats like sinx=siny\sin x=\sin y or cosx=cosy\cos x=\cos y or tanx=tany\tan x=\tan y and then we can find the solution of the equation as x=yx=y.

Complete step by step answer:
Given that,
2cos2x=3.2cos2x4 2cos2x=3(2cos2x)4........(i)\begin{aligned} & 2\cos 2x=3.2{{\cos }^{2}}x-4 \\\ & 2\cos 2x=3\left( 2{{\cos }^{2}}x \right)-4........\left( \text{i} \right) \end{aligned}
We know that, cos(A+B)=cosA.cosBsinAsinB\cos \left( \text{A}+\text{B} \right)=\cos \text{A}\text{.}\cos \text{B}-\sin \text{A}\sin \text{B} hence
cos(A+A)=cosA.cosAsinA.sinA cos2A=cos2Asin2A\begin{aligned} & \cos \left( \text{A}+\text{A} \right)=\cos \text{A}.\cos \text{A}-\sin \text{A}.\sin \text{A} \\\ & \text{cos2A}={{\cos }^{2}}\text{A}-{{\sin }^{2}}\text{A} \end{aligned}
We have the trigonometry identity as sin2A+cos2A=1{{\sin }^{2}}\text{A}+{{\cos }^{2}}\text{A}=1 then the above equation modified as
cos2A=cos2A(1cos2A) cos2A=2cos2A1 \begin{aligned} & \cos 2\text{A}={{\cos }^{2}}\text{A}-\left( 1-{{\cos }^{2}}\text{A} \right) \\\ & \cos 2\text{A}=2{{\cos }^{2}}\text{A}-1 \\\ \end{aligned}
From the above formula we are substituting 2cos2x=1+cos2x2{{\cos }^{2}}x=1+\cos 2x in equation (i)\left( \text{i} \right), we have
2cos2x=3(1+cos2x)4 2cos2x=3+3cos2x4 1=cos2x........(ii)\begin{aligned} & 2\cos 2x=3\left( 1+\cos 2x \right)-4 \\\ & 2\cos 2x=3+3\cos 2x-4 \\\ & 1=\cos 2x........\left( \text{ii} \right) \end{aligned}
We know that the values of cosx\cos x are varies as shown in the below figure

From the above figure we can say that for values like 2π,4π,6π,...2\pi ,4\pi ,6\pi ,... we have cosx=1\cos x=1 then from the equation (ii)\left( \text{ii} \right) we can write
cos2nπ=cos2x 2x=2nπ x=nπ,nI\begin{aligned} & \cos 2n\pi =\cos 2x \\\ & 2x=2n\pi \\\ & x=n\pi ,n\in I \end{aligned}

Note:
While using the formula cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 substitute the value of 2cos2x2{{\cos }^{2}}x but not substitute the value of cos2x\cos 2x why because if you substitute the value of cos2x\cos 2x then the equation turns into polynomial equation and the we get 22 values for the solution of xx