Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution of the differential equation:
dydx+1y21x2=0\frac {dy}{dx}+\sqrt {\frac {1-y^2}{1-x^2}}=0

Answer

dydx+1y21x2=0\frac {dy}{dx}+\sqrt {\frac {1-y^2}{1-x^2}}=0

dydx=1y21x2\frac {dy}{dx}=-\sqrt {\frac {1-y^2}{1-x^2}}

dy1y2=dx1x2\frac {dy}{\sqrt {1-y^2}}=-\frac {dx}{\sqrt {1-x^2}}

Integrating both sides, we get:

sin1y=sin1x+Csin^{-1}y=-sin^{-1}x+C

sin1x+sin1y=Csin^{-1}x+sin^{-1}y=C