Solveeit Logo

Question

Question: Find the general solution of \(sinx=tanx\)....

Find the general solution of sinx=tanxsinx=tanx.

Explanation

Solution

Hint: Use the fact that if sinx=siny\sin x=\sin y, then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z} and if cosx=cosy\cos x=\cos y, then x=2nπ±y,nZx=2n\pi \pm y,n\in \mathbb{Z}. Use sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and write the whole equation in terms of sines and cosines. Factorise the expression and use zero product property. Also, keep in mind that cosx0\cos x\ne 0. Hence write the general solution of the equation.

Complete step-by-step answer:
We have sinx = tanx.
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}
Hence, we have
sinx=sinxcosx\sin x=\dfrac{\sin x}{\cos x}
Multiplying both sides by cosx, we get
sinxcosx=sinx\sin x\cos x=\sin x
Subtracting sin(x) from both sides, we get
sinxcosxsinx=0\sin x\cos x-\sin x=0
Taking sin(x) common from the terms in LHS, we get
sinx(cosx1)=0\sin x\left( \cos x-1 \right)=0
Using zero product property, we get
sinx=0\sin x=0 or cosx1=0\cos x-1=0
Solving sinx = 0:
We have sin(0) = 1
Hence sin(x) = sin(0)
We know that the general solution of the equation sinx=siny\sin x=\sin y is given by x=nπ+(1)ny,nZx=n\pi +{{\left( -1\right)}^{n}}y,n\in \mathbb{Z}
Hence we have
x=nπ+(1)n(0)=nπ,nZx=n\pi +{{\left( -1 \right)}^{n}}\left( 0 \right)=n\pi ,n\in \mathbb{Z}
Solving cosx -1 =0:
We have cosx = 1
We know that cos(0)=1\cos \left( 0 \right)=1
Hence, we have
cosx=cos(0)\cos x=\cos \left( 0 \right)
We know that the general solution of the equation cosx = cosy is given by x=2nπ±yx=2n\pi \pm y
Hence we have
x=2nπ±0=2nπ,nZx=2n\pi \pm 0=2n\pi ,n\in \mathbb{Z}
Also, observe that \forall x\in \left\\{ n\pi ,n\in \mathbb{Z} \right\\},\cos x\ne 0 and \forall x\in\left\\{ 2n\pi ,n\in \mathbb{Z} \right\\},\cos x\ne 0
Hence we have
Hence we have x\in \left\\{ n\pi ,n\in \mathbb{Z} \right\\}\bigcup \left\\{ 2n\pi ,n\in \mathbb{Z} \right\\}

Observe that \left\\{ 2n\pi ,n\in \mathbb{Z} \right\\}\subset \left\\{ n\pi ,n\in \mathbb{Z} \right\\}
\left\\{ n\pi ,n\in \mathbb{Z} \right\\}\bigcup \left\\{ 2n\pi ,n\in \mathbb{Z} \right\\}=\left\\{ n\pi ,n\in \mathbb{Z} \right\\}
Hence x\in \left\\{ n\pi ,n\in \mathbb{Z} \right\\}, which is the general solution of the given equation sinx = tanx.

Note: Whenever solving equations involving tanx,cotx, secx and cosecx , do not forget to remove the
points in the domain at which they are undefined. This mistake is made by many students while
solving trigonometric equations.