Question
Question: Find the general solution of \[sinx + sin3x + sin5x = 0\]....
Find the general solution of sinx+sin3x+sin5x=0.
Explanation
Solution
Hint – Use the formula sina+sinb=2sin(2a+b)cos(2a−b).
We have ,
sinx+sin3x+sin5x=0 (sinx+sin5x)+sin3x=0We know ,
sina+sinb=2sin(2a+b)cos(2a−b)...(1)
Therefore,
sinx+sin5x=2sin(26x)cos(24x)=2sin(3x)cos(2x)...(2) [From (1)]
2sin(3x)cos(2x)+sin3x=0 [From (2)]
sin3x(2cos2x+1)=0
Either sin3x=0 or 2cos2x+1=0
i.e. sin3x=0or cos2x=2−1
3x=nπ,n∈Zor2x=2mπ±32πwherem∈Z
Hence, x=3nπorx=mπ±3π, where n,m∈Z.
Note – In these types of questions of finding general solutions, always try to simplify with the help of trigonometric formulas such that all terms on both sides are single or multiplied with each other . Then equate and then use quadrant rule in trigonometry to get the general solutions.