Solveeit Logo

Question

Question: Find the general solution of \[sinx + sin3x + sin5x = 0\]....

Find the general solution of sinx+sin3x+sin5x=0sinx + sin3x + sin5x = 0.

Explanation

Solution

Hint – Use the formula sina+sinb=2sin(a+b2)cos(ab2)\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right).

We have ,

sinx+sin3x+sin5x=0 (sinx+sin5x)+sin3x=0 sinx + sin3x + sin5x = 0 \\\ (sinx + sin5x) + sin3x = 0 \\\

We know ,
sina+sinb=2sin(a+b2)cos(ab2)...(1)\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)
Therefore,
sinx+sin5x=2sin(6x2)cos(4x2)=2sin(3x)cos(2x)...(2)sinx + sin5x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right) = 2\sin \left( {3x} \right)\cos \left( {2x} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)\,\,\,\, [From (1)]
2sin(3x)cos(2x)+sin3x=02\sin \left( {3x} \right)\cos \left( {2x} \right) + \sin 3x = 0\,\,\,\,\,\,\, [From (2)]
sin3x(2cos2x+1)=0sin3x(2cos2x + 1) = 0
Either  sin3x=0  {\text{ }}sin3x = 0\; or 2cos2x+1=02cos2x + 1 = 0
i.e. sin3x=0  or   cos2x=12sin3x = 0\;\,\,\,\,{\text{or }}\;cos2x = \dfrac{{ - 1}}{2}
3x=nπ,nZ  or  2x=2mπ±2π3  where  mZ3x = n\pi ,\,\,\,n \in Z\;\,\,\,\,\,{\text{or}}\,\,\,\,\;2x = 2m\pi \pm \dfrac{{2\pi }}{3}\,\,\,\,\;{\text{where}}\;m \in Z
Hence, x=nπ3  or  x=mπ±π3, where   n,mZx = \dfrac{{n\pi }}{3}\;\,\,{\text{or}}\,\,\,\,\;x = m\pi \pm \dfrac{\pi }{3},{\text{ where\; }}n,m \in Z.

Note – In these types of questions of finding general solutions, always try to simplify with the help of trigonometric formulas such that all terms on both sides are single or multiplied with each other . Then equate and then use quadrant rule in trigonometry to get the general solutions.