Solveeit Logo

Question

Question: Find the general solution of \(\csc x=-2\)....

Find the general solution of cscx=2\csc x=-2.

Explanation

Solution

Hint: First of all, we can write cscx=1sinx\csc x=\dfrac{1}{\sin x}. Now, we can find the principal solution of sinx=12\sin x=\dfrac{-1}{2}. By using the principal solution, we can find the general solution using sinx=sinα\sin x=\sin \alpha , then x=nπ+(1)nαx=n\pi +{{\left( -1 \right)}^{n}}\alpha .

Complete step-by-step answer:
Here we have to find the general solution of cscx=2\csc x=-2. Let us consider the equation given in the question, cscx=2\csc x=-2. We know that cscx=1sinx\csc x=\dfrac{1}{\sin x}, so we get, 1sinx=2\dfrac{1}{\sin x}=-2. By cross multiplying the equation, we get, sinx=12\sin x=\dfrac{-1}{2}. We know that sin30=12\sin 30{}^\circ =\dfrac{1}{2}. Since xx is negative, it will be in the third and fourth quadrants.

Value in the third quadrant =180+30=210=180{}^\circ +30{}^\circ =210{}^\circ . Value in the fourth quadrant =36030=330=360{}^\circ -30{}^\circ =330{}^\circ . So, for sinx=12\sin x=\dfrac{-1}{2}, we get,
x=210=210×π180=7π6 x=330=330×π180=11π6 \begin{aligned} & x=210{}^\circ =210\times \dfrac{\pi }{180}=\dfrac{7\pi }{6} \\\ & x=330{}^\circ =330\times \dfrac{\pi }{180}=\dfrac{11\pi }{6} \\\ \end{aligned}
Now, to find the general solution, let sinx=sinθ(i)\sin x=\sin \theta \ldots \ldots \ldots \left( i \right)
And we know that sinx=12(ii)\sin x=\dfrac{-1}{2}\ldots \ldots \ldots \left( ii \right)
From equation (i) and equation (ii), we get,
sinθ=12(iii)\sin \theta =\dfrac{-1}{2}\ldots \ldots \ldots \left( iii \right)
We have already calculated, sin7π6=12(iv)\sin \dfrac{7\pi }{6}=\dfrac{-1}{2}\ldots \ldots \ldots \left( iv \right)
So, from the equations, (i), (iii) and (iv), we get,
sinx=sinθ=sin7π6 sinx=sin7π6 \begin{aligned} & \sin x=\sin \theta =\sin \dfrac{7\pi }{6} \\\ & \Rightarrow \sin x=\sin \dfrac{7\pi }{6} \\\ \end{aligned}
We know that when sinx=sinθ\sin x=\sin \theta , then x=nπ+(1)nθx=n\pi +{{\left( -1 \right)}^{n}}\theta . By using this relation, we get, x=nπ+(1)n7π6x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}, when nNn\in N.
Hence, we get the general solution of cscx=2\csc x=-2 as x=nπ+(1)n7π6x=n\pi +{{\left( -1 \right)}^{n}}\dfrac{7\pi }{6}.

Note: In these types of questions, instead of remembering all the multiple formulas for each trigonometric ratio, it is better to convert sec, cosec and cot into cos, sin and tan respectively and then solve the question. It is also advised to learn the values of sin, cos, and tan at the standard angles which are, 0,30,45,60,900{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ as we can always find the higher angles with the use of these angles.