Solveeit Logo

Question

Question: Find the general solution of \[\cos x - \sin x = 1\]....

Find the general solution of cosxsinx=1\cos x - \sin x = 1.

Explanation

Solution

Here, we need to simplify the equation and find a general solution of the equation. A general solution is a value of xx which is true for all numbers in a certain range. We will simplify the equation using algebraic and trigonometric identities, such that the left hand side and right hand side are the sine of some angle. Then, using the trigonometric equations, we will find the general solution of the equation.
Formula used: We will use the following formulas to solve the questions:

  1. The square of the difference of two numbers is given by the algebraic identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab.
  2. The sine of the double of an angle is twice the product of the sine and cosine of that angle, that is sin2A=2sinAcosA\sin 2A = 2\sin A\cos A.
  3. Trigonometric equation: If sinx=0\sin x = 0, then x=nπx = n\pi , where nn can be any integer.

Complete step by step solution:
We will use trigonometric identities to simplify the equation. Then, we will use trigonometric equations for sine to get the general solution of the given equation.
Squaring both sides, we get
(cosxsinx)2=(1)2 (cosxsinx)2=1\begin{array}{l}{\left( {\cos x - \sin x} \right)^2} = {\left( 1 \right)^2}\\\ \Rightarrow {\left( {\cos x - \sin x} \right)^2} = 1\end{array}
Substituting a=cosxa = \cos x and b=sinxb = \sin x in the algebraic identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get
(cosxsinx)2=(cosx)2+(sinx)22(cosx)(sinx)\Rightarrow {\left( {\cos x - \sin x} \right)^2} = {\left( {\cos x} \right)^2} + {\left( {\sin x} \right)^2} - 2\left( {\cos x} \right)\left( {\sin x} \right)
Rewriting the equation, we get
(cosxsinx)2=cos2x+sin2x2cosxsinx (cosxsinx)2=sin2x+cos2x2sinxcosx\begin{array}{l} \Rightarrow {\left( {\cos x - \sin x} \right)^2} = {\cos ^2}x + {\sin ^2}x - 2\cos x\sin x \\\ \Rightarrow {\left( {\cos x - \sin x} \right)^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x\end{array}
Now, the sum of the square of the sine and cosine of an angle is always equal to 1.
Therefore, we get
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
We know that sin2A=2sinAcosA\sin 2A = 2\sin A\cos A.
Therefore, substituting A=xA = x in the formula, we get
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
Substituting sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and 2sinxcosx=sin2x2\sin x\cos x = \sin 2x in the equation (cosxsinx)2=sin2x+cos2x2sinxcosx{\left( {\cos x - \sin x} \right)^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x, we get
(cosxsinx)2=1sin2x\Rightarrow {\left( {\cos x - \sin x} \right)^2} = 1 - \sin 2x
Substituting (cosxsinx)2=1{\left( {\cos x - \sin x} \right)^2} = 1 in the equation, we get
1=1sin2x\Rightarrow 1 = 1 - \sin 2x
Subtracting 1 from both sides of the equation, we get
11=1sin2x1 0=sin2x sin2x=0\begin{array}{l} \Rightarrow 1 - 1 = 1 - \sin 2x - 1\\\ \Rightarrow 0 = - \sin 2x\\\ \Rightarrow \sin 2x = 0\end{array}
Now, we will use trigonometric equations for sine.
We know that if sinx=0\sin x = 0, then x=nπx = n\pi , where nn can be any integer.
Therefore, since sin2x=0\sin 2x = 0, we get
2x=nπ,nZ2x = n\pi ,{\rm{ }}n \in Z
Dividing both sides by 2, we get
x=nπ2,nZ\Rightarrow x = \dfrac{{n\pi }}{2},{\rm{ }}n \in Z

Therefore, the general solution of the equation cosxsinx=1\cos x - \sin x = 1 is x=nπ2x = \dfrac{{n\pi }}{2}, where nn can be any integer.

Note:
We can also solve this question using trigonometric equations for cosine.
Dividing both sides of the equation cosxsinx=1\cos x - \sin x = 1 by 2\sqrt 2 , we get
cosxsinx2=12\Rightarrow \dfrac{{\cos x - \sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}
Splitting the L.C.M. and rewriting the equation, we get
cosx2sinx2=12 cosx×12sinx×12=12\begin{array}{l} \Rightarrow \dfrac{{\cos x}}{{\sqrt 2 }} - \dfrac{{\sin x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\\\ \Rightarrow \cos x \times \dfrac{1}{{\sqrt 2 }} - \sin x \times \dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}\end{array}
We know that the sine and cosine of the angle π4\dfrac{\pi }{4} is 12\dfrac{1}{{\sqrt 2 }}.
Rewriting 12\dfrac{1}{{\sqrt 2 }} as sinπ4\sin \dfrac{\pi }{4} and cosπ4\cos \dfrac{\pi }{4}, we get
cosxcosπ4sinxsinπ4=cosπ4\Rightarrow \cos x\cos \dfrac{\pi }{4} - \sin x\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4}
The trigonometric identity for the cosine of the sum of two angles is given by the formula cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B.
Using the trigonometric identity in the equation, we get
cos(x+π4)=cosπ4\Rightarrow \cos \left( {x + \dfrac{\pi }{4}} \right) = \cos \dfrac{\pi }{4}
Now, we will use trigonometric equations for cosine.
We know that if cosx=cosθ\cos x = \cos \theta , then x=2nπ±θx = 2n\pi \pm \theta , where nn can be any integer and θ(0,π]\theta \in \left( {0,\pi } \right].
Therefore, since cos(x+π4)=cosπ4\cos \left( {x + \dfrac{\pi }{4}} \right) = \cos \dfrac{\pi }{4}, we get
x+π4=2nπ±π4x + \dfrac{\pi }{4} = 2n\pi \pm \dfrac{\pi }{4}
Subtracting π4\dfrac{\pi }{4} from both sides, we get
x=2nπ±π4π4\Rightarrow x = 2n\pi \pm \dfrac{\pi }{4} - \dfrac{\pi }{4}
x=2nπ+π4π4\Rightarrow x = 2n\pi + \dfrac{\pi }{4} - \dfrac{\pi }{4} or x=2nππ4π4x = 2n\pi - \dfrac{\pi }{4} - \dfrac{\pi }{4}
Simplifying the equations, we get
x=2nπ\Rightarrow x = 2n\pi or x=2nππ2x = 2n\pi - \dfrac{\pi }{2}
Therefore, the general solution of the equation cosxsinx=1\cos x - \sin x = 1 is x=2nπx = 2n\pi or x=2nππ2x = 2n\pi - \dfrac{\pi }{2}, where nn can be any integer.