Solveeit Logo

Question

Question: Find the general solution of \(\cos 3x = \sin 2x\) ....

Find the general solution of cos3x=sin2x\cos 3x = \sin 2x .

Explanation

Solution

Equations involving trigonometric functions of a variable are called trigonometric equations.
The value of the variable (or unknown) which satisfies the trigonometric equations is called solutions.
We know that the values of sinx\sin x and cosx\cos x repeat after an interval of 2π2\pi and the values of tanx\tan x repeat after an interval of π\pi .
The solutions of a trigonometric equation for which 0x2π0 \leqslant x \leqslant 2\pi are called principal solutions.
The expression involving integer n'n' which gives all solutions of a trigonometric equation is called the general solution.
Always factorize the equation to find the variables.
For sinx=0\sin x = 0gives x=nπx = n\pi , where nZn \in \mathbb{Z}.
For cosx=0\cos x = 0 gives x=(2n+1)π2x = \left( {2n + 1} \right)\dfrac{\pi }{2} , where nZn \in \mathbb{Z}.
In related questions, you might come across the situation like:
sinx=sinπ3\sin x = \sin \dfrac{\pi }{3};
Use the following theorem to simplify:
For any real numbers x and y,
sinx=sinyx=nπ+(1)ny,\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y, where nZn \in \mathbb{Z}.
For sinx=sinπ3\sin x = \sin \dfrac{\pi }{3}
x=nπ+(1)nπ3\Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{3} , where nZn \in \mathbb{Z}.

Complete step-by-step answer:
Step 1: Simplify the given equation:
cos3x=sin2x\cos 3x = \sin 2x
Using trigonometric identity:
cos3x=4cos3x3cosx sin2x=2sinxcosx  \cos 3x = 4{\cos ^3}x - 3\cos x \\\ \sin 2x = 2\sin x\cos x \\\
The equation becomes:
 4cos3x3cosx=2sinxcosx  4cos3x3cosx2sinxcosx=0  \Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x = 2\sin x\cos x \\\ \Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x - 2\sin x\cos x = 0 \\\
Taking cosx\cos xas common
 cosx(4cos2x32sinx)=0\Rightarrow {\text{ }}\cos x\left( {4{{\cos }^2}x - 3 - 2\sin x} \right) = 0
Using trigonometric identity:
cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1
cos2x=1sin2x\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x
The equation becomes:

 cosx[4(1sin2x)32sinx]=0  cosx[44sin2x32sinx]=0  \Rightarrow {\text{ }}\cos x\left[ {4\left( {1 - {{\sin }^2}x} \right) - 3 - 2\sin x} \right] = 0 \\\ \Rightarrow {\text{ }}\cos x\left[ {4 - 4{{\sin }^2}x - 3 - 2\sin x} \right] = 0 \\\

 cosx(14sin2x2sinx)=0 \Rightarrow {\text{ }}\cos x\left( {1 - 4{{\sin }^2}x - 2\sin x} \right) = 0 ….. (1)
Step 2: Find the general solutions:
If the product of two numbers is 0, then either the first number or second number of both of them are 0.
Thus, cosx=0\cos x = 0 and/or 14sin2x2sinx=01 - 4{\sin ^2}x - 2\sin x = 0
For cosx=0\cos x = 0

Graph: cosx\cos x
From the graph we can see that cosx=0\cos x = 0for the odd multiple of π2\dfrac{\pi }{2}
x=(2n+1)π2\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2} …… (2)
Where nZn \in \mathbb{Z} . Z\mathbb{Z}is a set of integers.
For n = 0, x=π2x = \dfrac{\pi }{2} .
For n = 1, x=3π2x = \dfrac{{3\pi }}{2}
For 14sin2x2sinx=01 - 4{\sin ^2}x - 2\sin x = 0
Let sinx=y\sin x = y
Therefore, 14y22y=01 - 4{y^2} - 2y = 0
Use the discrimination method to solve the quadratic equation in y.
ay2+by+c=0 y=b±b24ac2a  a{y^2} + by + c = 0 \\\ \Rightarrow y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\\
4y2+2y1=04{y^2} + 2y - 1 = 0
on comparing with standard quadratic equation:
a=4;b=2;c=1 y=2±224(4)(1)2(4) y=2±4+168 y=2±208 y=2±258 y=1±52  a = 4;b = 2;c = - 1 \\\ \Rightarrow y = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} \\\ \Rightarrow y = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8} \\\ \Rightarrow y = \dfrac{{ - 2 \pm \sqrt {20} }}{8} \\\ \Rightarrow y = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8} \\\ \Rightarrow y = \dfrac{{ - 1 \pm \sqrt 5 }}{2} \\\
Thus, sinx=1±52\sin x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}

Graph: sinx\sin x
Range of y=sinx=[1,1]y = \sin x = \left[ { - 1,1} \right]
1521.6<\-1\dfrac{{ - 1 - \sqrt 5 }}{2} \simeq - 1.6 < \- 1
sinx152\Rightarrow \sin x \ne \dfrac{{ - 1 - \sqrt 5 }}{2}
So, sinx=1+52\sin x = \dfrac{{ - 1 + \sqrt 5 }}{2}
We know, sin18=1+52\sin 18^\circ = \dfrac{{ - 1 + \sqrt 5 }}{2}
sinx=sin18\Rightarrow \sin x = \sin 18^\circ
To convert degree into radian:x=π10x = \dfrac{\pi }{{10}}
We know, 180=π180^\circ = \pi radians
Therefore, 1=π1801^\circ = \dfrac{\pi }{{180^\circ }}
So, 18=18×π18018^\circ = 18^\circ \times \dfrac{\pi }{{180^\circ }}
 = π10\Rightarrow {\text{ }} = {\text{ }}\dfrac{\pi }{{10}} radians
Or sinx=sinπ10\sin x = \sin \dfrac{\pi }{{10}}
We know, sinx=sinyx=nπ+(1)ny,\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y, where nZn \in \mathbb{Z}. Z\mathbb{Z}is a set of integers.
On comparing, y=π10y = \dfrac{\pi }{{10}}
x=nπ+(1)nπ10\Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{{10}} …… (3)
For n = 0,
For n = 1, x=9π10x = \dfrac{{9\pi }}{{10}}
For n =2, x=21π10x = \dfrac{{21\pi }}{{10}}
The general solution of the equation (1) is the union of equation (2) and (3) as both the value of x satisfies the equation (1)
Final answer: Thus, the general solution of cos3x=sin2x\cos 3x = \sin 2x is x = \left[ {\left\\{ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right\\} \cup \left\\{ {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{{10}}} \right\\}} \right] , where nZn \in \mathbb{Z}.

Note: Similarly for any real numbers x and y,
cosx=cosyx=2nπ±y,\cos x = \cos y \Rightarrow x = 2n\pi \pm y, where nZn \in \mathbb{Z}.
tanx=tanyx=nπ+y\tan x = \tan y \Rightarrow x = n\pi + y , where nZn \in \mathbb{Z}.
Learn trigonometric identities to solve related questions easily.