Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: dydx+(sec x)y=tanx, (0x<π2)\frac {dy}{dx}+(sec\ x)y=tan x, \ (0≤x<\frac \pi2)

Answer

The given differential equation is:

dydx\frac {dy}{dx}+py = Q(where p = sec x and Q = tan x)

Now, I.F = e∫pdx = \intsec x dx = elog(sec x+tan x) = sec x+tan x

The general solution of the given differential equation is given by the relation,

y(I.F.) = \int(Q×I.F.)dx + C

⇒y(secx + tanx) = \inttan x(sec x + tan x)dx +C

⇒y(sec x + tan x) =\intsec x tan x dx + \inttan2x dx + C

⇒y(sec x + tan x) = sec x +\int(sec2x - 1)dx + C

⇒y(sec x + tan x) = sec x + tan x - x + C