Question
Mathematics Question on Differential equations
Find the general solution: dxdy+2y=sin x
The given differential equation is dxdy+2y = sin x.
This is in the form of dxdy+py = Q (where p=2 and Q=sin x).
∫pdx = ∫2dx = 2∫1dx = 2x
Now, I.F = e∫pdx = e2x.
The solution of the given differential equation is given by the relation,
y(I.F.) = ∫(Q×I.F.)dx + C
⇒ye2x = ∫sin x . e2x dx+C …....(1)
Let I = ∫sin x . e2x
⇒I = sin x . ∫e2xdx - ∫(dxd(sin x) . ∫e2xdx) dx
⇒I = sin x . 2e2x - ∫(cos x . 2e2x)dx
⇒I = 2e2xsin x - 21[cos x.∫e2x - ∫(dxd(cosx).∫e2xdx)dx]
⇒I = 2e2xsin x - 21[cos x . e2x/2-∫[(-sinx).e2x/2]dx]
⇒I = 2e2xsin x -4e2xcos x-\frac 14$$\int(sin x . e2x)dx
⇒I = 4e2x(2sin x - cos x)-41I
⇒45I = 4e2x(2sin x - cos x)
⇒I = 5e2x(2sin x - cos x)
Therefore, equation(1)becomes:
ye2x = 5e2x(2sin x - cos x)+C
⇒y = 51(2sin x -cos x) + Ce-2x
This is the required general solution of the given differential equation.