Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: dydx+2y=sin x\frac {dy}{dx}+2y=sin\ x

Answer

The given differential equation is dydx\frac {dy}{dx}+2y = sin x.

This is in the form of dydx\frac {dy}{dx}+py = Q (where p=2 and Q=sin x).
\intpdx = \int2dx = 2\int1dx = 2x

Now, I.F = e∫pdx = e2x.

The solution of the given differential equation is given by the relation,

y(I.F.) = \int(Q×I.F.)dx + C

⇒ye2x = \intsin x . e2x dx+C …....(1)

Let I = \intsin x . e2x

⇒I = sin x . \inte2xdx - \int(ddx\frac{d}{dx}(sin x) . \inte2xdx) dx

⇒I = sin x . e2x2\frac {e^{2x}}{2} - \int(cos x . e2x2\frac {e^{2x}}{2})dx

⇒I = e2xsin x2\frac {e^{2x}sin\ x}{2} - 12\frac 12[cos x.\inte2x - \int(ddx\frac {d}{dx}(cosx).∫e2xdx)dx]

⇒I = e2xsin x2\frac {e^{2x}sin\ x}{2} - 12\frac 12[cos x . e2x/2-\int[(-sinx).e2x/2]dx]

⇒I = e2xsin x2\frac {e^{2x}sin\ x}{2} -e2xcos x4\frac {e^{2x}cos\ x}{4}-\frac 14$$\int(sin x . e2x)dx

⇒I = e2x4\frac {e^{2x}}{4}(2sin x - cos x)-14\frac 14I

54\frac 54I = e2x4\frac {e^{2x}}{4}(2sin x - cos x)

⇒I = e2x5\frac {e^{2x}}{5}(2sin x - cos x)

Therefore, equation(1)becomes:

ye2x = e2x5\frac {e^{2x}}{5}(2sin x - cos x)+C

⇒y = 15\frac 15(2sin x -cos x) + Ce-2x

This is the required general solution of the given differential equation.