Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the general solution for the equation cos4x=cos2xcos4x = cos2x.

A

nπ2\frac{n\pi}{2}, nZn \in Z

B

nπn\pi, nZn \in Z

C

nπ3\frac{n\pi}{3}, nZn \in Z

D

Both (b)(b) and (c)(c)

Answer

Both (b)(b) and (c)(c)

Explanation

Solution

We have, cos4x=cos2xcos4x = cos2x \therefore The general solution is 4x=2nπ?2x4x = 2n\pi ? 2x [cosθ=cosαθ=2nπ±α,nZ]\left[\because cos\theta=cos\alpha \Rightarrow \theta=2n\pi \pm\alpha, n \in Z\right] 4x=2nπ+2x\Rightarrow 4x = 2n\pi + 2x or 4x=2nπ2x4x = 2n\pi - 2x 4x2x=2nπ\Rightarrow 4x - 2x = 2n\pi or 4x+2x=2nπ4x + 2x = 2n\pi 2x=2nπ\Rightarrow 2x=2n\pi or 6x=2nπ6x=2n\pi x=nπ\Rightarrow x=n\pi or x=13nπx=\frac{1}{3} n\pi, where nZn \in Z Hence, the required general solution is x=nπ3x=\frac{n\pi}{3}, nZn \in Z.