Solveeit Logo

Question

Question: Find the general solution for \[cos4x = cos2x\]...

Find the general solution for cos4x=cos2xcos4x = cos2x

Explanation

Solution

To find the general solution of cos4x=cos2xcos4x = cos2x, we use the formulas of cosxcosy=2sinx+y2sinxy2  cosx - cosy = - 2sin\dfrac{{x + y}}{2}sin\dfrac{{x - y}}{2}\;. And using sinx=siny  sinx = siny\; general solution, which is x=nπ±(1)ny  x = n\pi \pm {\left( { - 1} \right)^n}y\;, we get the desired result.

Complete step by step Answer:

Given cos4x=cos2xcos4x = cos2x
cos4xcos2x=0\Rightarrow cos4x - cos2x = 0
As, we know that, cosxcosy=2sinx+y2sinxy2  cosx - cosy = - 2sin\dfrac{{x + y}}{2}sin\dfrac{{x - y}}{2}\;
Replacing x with 4x4x and y with 2x2x, we get,
cos4xcos2x=2sin4x+2x2sin4x2x2  \Rightarrow cos4x - cos2x = - 2sin\dfrac{{4x + 2x}}{2}sin\dfrac{{4x - 2x}}{2}\;
On simplification we get,
cos4xcos2x=2sin3xsinx  \Rightarrow cos4x - cos2x = - 2sin3x\sin x\;
As, cos4xcos2x=0cos4x - cos2x = 0, we get,
2sin3xsinx=0  \Rightarrow - 2sin3x\sin x = 0\;
sin3xsinx=0  \Rightarrow sin3x\sin x = 0\;
So, either sin3x=0  sin3x = 0\;or sinx=0sinx = 0
We solve sin3x=0  sin3x = 0\;& sinx=0sinx = 0 separately,
General solution for sin3x=0sin3x = 0
Let sinx=siny  sinx = siny\;(1)
sin3x=sin3y  sin3x = sin3y\;
(2)
Given sin3x=0  sin3x = 0\;
From (1) and (2)
sin3y=0sin3y = 0
As, sin(0)=0\sin (0) = 0, we get,
sin3y=sin(0)\Rightarrow sin3y = sin\left( 0 \right)
Using, if sinx=siny\sin x = \sin y, then x=yx = y,
3y=0\Rightarrow 3y = 0
y=0\Rightarrow y = 0___(3)
General solution for sin3x=sin3y  sin3x = sin3y\;is
3x=nπ±(1)n3y  3x = n\pi \pm {\left( { - 1} \right)^n}3y\;where nZn \in Z
Putting y=0y = 0, we get,
3x=nπ±(1)n0\Rightarrow 3x = n\pi \pm {\left( { - 1} \right)^n}0
3x=nπ\Rightarrow 3x = n\pi
On dividing by 3 we get,
x=nπ3\Rightarrow x = \dfrac{{n\pi }}{3}​ where nZn \in Z
General solution for sinx=0sinx = 0
Let sinx=sinysinx = siny
Given sinx=0sinx = 0,
From (1) and (2)
siny=0siny = 0
As, sin(0)=0\sin (0) = 0, we get,
siny=sin(0)\Rightarrow siny = sin\left( 0 \right)
Using, if sinx=siny\sin x = \sin y, then x=yx = y,
y=0\Rightarrow y = 0
General solution for sinx=sinysinx = sinyis
x=nπ±(1)ny  x = n\pi \pm {\left( { - 1} \right)^n}y\;where nZn \in Z
putting y=0y = 0,
x=nπ±(1)n0x = n\pi \pm {\left( { - 1} \right)^n}0
x=nπ\Rightarrow x = n\piwhere nZn \in Z
Therefore,
General Solution are
For sin3x=0,x=nπ3sin3x = 0,x = \dfrac{{n\pi }}{3}
Or
For sinx=0,x=nπsinx = 0,x = n\pi
Where nZn \in Z

Note: We need to keep in mind that sinx=sinysinx = siny has infinite number of solutions. For every n in this solution we will have different solutions in here x=nπ±(1)ny  x = n\pi \pm {\left( { - 1} \right)^n}y\;. You should consider both the cases, and solve for both of them.