Solveeit Logo

Question

Question: Find the general solution: \[\cos 3x + \cos x - \cos 2x = 0\]...

Find the general solution:
cos3x+cosxcos2x=0\cos 3x + \cos x - \cos 2x = 0

Explanation

Solution

We can start the problem with analyzing cos(3x)=cos(x + 2x)cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right). Then using that formula cos(a+b)=cosacosbsinasinb\cos (a + b) = \cos a\cos b - \sin a\sin b we can simplify and then, we substitute the value incos3x+cosxcos2x=0\cos 3x + \cos x - \cos 2x = 0, and then on further simplification, we get the solution.

Complete step by step Answer:

We are to find a general solution of, cos3x+cosxcos2x=0\cos 3x + \cos x - \cos 2x = 0
we start with,
cos(3x)=cos(x + 2x)cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)
Now, as, cos(a+b)=cosacosbsinasinb\cos (a + b) = \cos a\cos b - \sin a\sin b
= cos(x)cos(2x)  sin(x)sin(2x)= {\text{ }}cos\left( x \right)cos\left( {2x} \right){\text{ }} - {\text{ }}sin\left( x \right)sin\left( {2x} \right)
As, cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
=cos(x)(2cos2(x)1)2sin2(x)cos(x)= cos(x)(2co{s^2}(x) - 1) - 2si{n^2}(x)cos(x)
Now, on simplifying, and using 1cos2x=sin2x1 - {\cos ^2}x = {\sin ^2}x we get,
=2cos3(x)cos(x)2cos(x)(1cos2(x))= 2co{s^3}(x) - cos(x) - 2cos(x)(1 - co{s^2}(x))
On adding like terms we get,
=4cos3(x)3cos(x)= 4co{s^3}(x) - 3cos(x)
Therefore cos(3x) + cos(x)  cos(2x) = 0cos\left( {3x} \right){\text{ }} + {\text{ }}cos\left( x \right){\text{ }} - {\text{ }}cos\left( {2x} \right){\text{ }} = {\text{ }}0can also be written as
4cos3(x)3cos(x)+cos(x)2cos2(x)+1=04co{s^3}(x) - 3cos(x) + cos(x) - 2co{s^2}(x) + 1 = 0
On adding the like terms we get,
4cos3(x)2cos2(x)2cos(x)+1=0\Rightarrow 4co{s^3}(x) - 2co{s^2}(x) - 2cos(x) + 1 = 0
On taking terms common we get,
2cos2x(2cos(x)1)1(2cos(x)1)=0\Rightarrow 2{\cos ^2}x(2cos(x) - 1) - 1(2cos(x) - 1) = 0
(2cos2(x)1)(2cos(x)1)=0\Rightarrow (2co{s^2}(x) - 1)(2cos(x) - 1) = 0
Thus we can say that 2cos2(x)=12co{s^2}(x) = 1or 2cos(x) = 12cos\left( x \right){\text{ }} = {\text{ }}1
Hence cos(x) = 12cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{{\sqrt 2 }}or cos(x) = - 12cos\left( x \right){\text{ }} = {\text{ - }}\dfrac{1}{{\sqrt 2 }}or cos(x) = 12cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{2}
Hence x = 45 or 135 or 225 or 315x{\text{ }} = {\text{ }}45^\circ {\text{ }}or{\text{ }}135^\circ {\text{ }}or{\text{ }}225^\circ {\text{ }}or{\text{ }}315°
OR x = 60 or 300x{\text{ }} = {\text{ }}60^\circ {\text{ }}or{\text{ }}300^\circ .

Note: The general solution of the equation should be stated as the solution in the range of 360- 360^\circto 360360^\circ . We will consider the values as general values if they are inside that given range. Otherwise, the decision is not general. We should consider all the possible cases and solve for all of them.