Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: (1+x2)dy+2xy dx=cot x dx (x0)(1+x^2)dy+2xy \ dx=cot \ x\ dx\ (x≠0)

Answer

(1+x2)dy+2xy dx=cot x dx
⇒$$\frac {dy}{dx}+2xy1+x2\frac {2xy}{1+x^2} = cot x1+x2\frac {cot\ x}{1+x^2}

This equation is a linear differential equation of the form:

dydx\frac {dy}{dx} + py = Q (where p = 2x1+x2\frac {2x}{1+x^2} and Q = cot x1+x2\frac {cot\ x}{1+x^2})
Now, I.F. = epdxe^{\int p dx} = e\int$$\frac {2x}{1+x^2}dx = elog(1+x2) = 1+x2.

The general solution of the given differential equation is given by the relation,

y(I.F.) = \int(Q×I.F.)dx + C
y(1+x2) = \int[cot x1+x2\frac {cot\ x}{1+x^2}.(1+x2)]dx + C
y(1+x2) = \intcot x dx + C
y(1+x2) = log |sin x| + C
y = log sin x1+x2+c1+x2\frac {log\ |sin\ x|}{1+x^2} + \frac {c}{1+x^2}
y = (1+x2)-1 log |sin x| + c(1+x2)-1