Solveeit Logo

Question

Question: Find the general and principal value of \[\log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \r...

Find the general and principal value of log(1+i)log(1i)\log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) ?

Explanation

Solution

In the above given question, we are given an expression written as log(1+i)log(1i)\log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) . This expression consists of the logarithmic function and the complex number unit ii , called iota defined as i=1i = \sqrt { - 1} . We have to find the general and principal value of the given expression.

Complete answer:
Given expression is,
log(1+i)log(1i)\Rightarrow \log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right)
We have to find the general and principal value of the given expression.
First let us rewrite the given expression in a smaller form.
Using the logarithmic formula of division that is given by logAlogB=logAB\log A - \log B = \log \dfrac{A}{B} , we can write
log(1+i)log(1i)=log(1+i)(1i)\Rightarrow \log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) = \log \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}}
Now consider (1+i)(1i)\dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} .
Hence, multiplying and dividing this expression with the conjugate of the denominator, that is 1+i - 1 + i , we get
(1+i)(1i)=(1+i)(1i)(1+i)(1+i)\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} \cdot \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 + i} \right)}}
That gives us,
(1+i)(1i)=(1+i)21i2\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \dfrac{{{{\left( { - 1 + i} \right)}^2}}}{{1 - {i^2}}}
Or,
(1+i)(1i)=1+i22i1i2\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \dfrac{{1 + {i^2} - 2i}}{{1 - {i^2}}}
We can also write is as,
(1+i)(1i)=112i1(1)\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \dfrac{{1 - 1 - 2i}}{{1 - \left( { - 1} \right)}}
That gives us,
(1+i)(1i)=2i2\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \dfrac{{ - 2i}}{2}
Hence,
(1+i)(1i)=i\Rightarrow \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = - i
Therefore we have the original expression as,
log(1+i)log(1i)=log(1+i)(1i)=log(i)\Rightarrow \log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) = \log \dfrac{{\left( { - 1 + i} \right)}}{{\left( { - 1 - i} \right)}} = \log \left( { - i} \right)
Now we have to find the value of log(i)\log \left( { - i} \right) .
Since we know that eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta ,
Therefore, taking θ=3π2\theta = \dfrac{{3\pi }}{2} we can write
ei3π2=cos3π2+isin3π2\Rightarrow {e^{i\dfrac{{3\pi }}{2}}} = \cos \dfrac{{3\pi }}{2} + i\sin \dfrac{{3\pi }}{2}
That gives us,
ei3π2=cos(π+π2)+isin(π+π2)\Rightarrow {e^{i\dfrac{{3\pi }}{2}}} = \cos \left( {\pi + \dfrac{\pi }{2}} \right) + i\sin \left( {\pi + \dfrac{\pi }{2}} \right)
Or,
ei3π2=cosπ2isinπ2\Rightarrow {e^{i\dfrac{{3\pi }}{2}}} = - \cos \dfrac{\pi }{2} - i\sin \dfrac{\pi }{2}
Now since, cosπ2=0\cos \dfrac{\pi }{2} = 0 and sinπ2=1\sin \dfrac{\pi }{2} = 1
Hence, we have
ei3π2=i\Rightarrow {e^{i\dfrac{{3\pi }}{2}}} = - i
Therefore, now we have the original expression as,
log(1+i)log(1i)=log(i)=log(ei3π2)\Rightarrow \log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) = \log \left( { - i} \right) = \log \left( {{e^{i\dfrac{{3\pi }}{2}}}} \right)
Now, we can write
log(ei3π2)=i3π2loge\Rightarrow \log \left( {{e^{i\dfrac{{3\pi }}{2}}}} \right) = i\dfrac{{3\pi }}{2}\log e
For a natural logarithmic function, we have logee=1{\log _e}e = 1 .
Hence, that gives us
log(ei3π2)=i3π2\Rightarrow \log \left( {{e^{i\dfrac{{3\pi }}{2}}}} \right) = i\dfrac{{3\pi }}{2}
Therefore, the principal value of log(1+i)log(1i)\log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) is i3π2i\dfrac{{3\pi }}{2} .
Now, for the general value of this expression we can write θ\theta as,
θ=3π2+2kπ\Rightarrow \theta = \dfrac{{3\pi }}{2} + 2k\pi
Where kZk \in \mathbb{Z} i.e. kk is any integer.
Therefore, the general value of log(1+i)log(1i)\log \left( { - 1 + i} \right) - \log \left( { - 1 - i} \right) is i(3π2+2kπ)i\left( {\dfrac{{3\pi }}{2} + 2k\pi } \right) .

Note:
If the trigonometric or complex equation involves the angle θ\theta such that 0θ2π0 \leqslant \theta \leqslant 2\pi , then the solutions are called principal solutions.
Whereas a general solution is the one which involves the integer kk and gives all the solutions of that trigonometric equation. Here, the symbol Z\mathbb{Z} is used to denote the set of integers.