Solveeit Logo

Question

Mathematics Question on Functions

Find the function f(x1,x2,x3)f(x_1, x_2, x_3) satisfying f(x1,x2,x3)=1f(x_1, x_2, x_3) = 1 at x1=1,x2=x3=0x_1 = 1, x_2 = x_3 = 0 .

A

x1x2x_{1}' \cdot x_{2}

B

x1x2x_{1} \cdot x_{2}'

C

(x1+x2+x3)x2\left(x_{1} + x_{2} +x_{3}\right)' \cdot x_{2}

D

(x1+x3)x3\left(x_{1}' +x_{3}\right) \cdot x_{3}

Answer

x1x2x_{1} \cdot x_{2}'

Explanation

Solution

Given, x1=1,x2=x3=0x_{1}=1, x_{2}=x_{3}=0 x1x2=1(0)=1x_{1} \cdot x_{2}'=1(0)'=1