Solveeit Logo

Question

Question: Find the fourth proportional to $(a + b)^2 \times (a^3 - b^3), (a^3 + b^3), (a^2 - b^2)$....

Find the fourth proportional to (a+b)2×(a3b3),(a3+b3),(a2b2)(a + b)^2 \times (a^3 - b^3), (a^3 + b^3), (a^2 - b^2).

A

(a2ab+b2)(a+b)\frac{(a^2-ab+b^2)}{(a+b)}

B

(a2+ab+b2)(ab)\frac{(a^2+ab+b^2)}{(a-b)}

C

(a2ab+b2)(a2+ab+b2)\frac{(a^2-ab+b^2)}{(a^2+ab+b^2)}

D

(a2+ab+b2)(a2b2)\frac{(a^2+ab+b^2)}{(a^2-b^2)}

Answer

(a2ab+b2)(a2+ab+b2)\frac{(a^2-ab+b^2)}{(a^2+ab+b^2)}

Explanation

Solution

To find the fourth proportional XX to P=(a+b)2(a3b3)P = (a + b)^2 (a^3 - b^3), Q=(a3+b3)Q = (a^3 + b^3), and R=(a2b2)R = (a^2 - b^2), we use the relationship PQ=RX\frac{P}{Q} = \frac{R}{X}. Solving for XX, we have X=Q×RPX = \frac{Q \times R}{P}.

Substituting the given expressions: X=(a3+b3)(a2b2)(a+b)2(a3b3)X = \frac{(a^3 + b^3)(a^2 - b^2)}{(a + b)^2 (a^3 - b^3)}

Now we factorize using algebraic identities:

  • a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2-ab+b^2)
  • a2b2=(ab)(a+b)a^2 - b^2 = (a-b)(a+b)
  • a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2+ab+b^2)

Substituting these factorizations into the expression for XX:

X=[(a+b)(a2ab+b2)]×[(ab)(a+b)](a+b)2×[(ab)(a2+ab+b2)]X = \frac{[(a+b)(a^2-ab+b^2)] \times [(a-b)(a+b)]}{(a+b)^2 \times [(a-b)(a^2+ab+b^2)]}

Simplifying the numerator: (a+b)(a+b)=(a+b)2(a+b)(a+b) = (a+b)^2.

X=(a+b)2(ab)(a2ab+b2)(a+b)2(ab)(a2+ab+b2)X = \frac{(a+b)^2 (a-b) (a^2-ab+b^2)}{(a+b)^2 (a-b) (a^2+ab+b^2)}

Canceling common terms (a+b)2(a+b)^2 and (ab)(a-b) from numerator and denominator yields:

X=(a2ab+b2)(a2+ab+b2)X = \frac{(a^2-ab+b^2)}{(a^2+ab+b^2)}