Solveeit Logo

Question

Mathematics Question on integral

Find the following integral: x(3x2+2x+3)dx\int \sqrt x(3x^2+2x+3)dx

Answer

x(3x2+2x+3)dx\int \sqrt x(3x^2+2x+3)dx

= (3x52+2x32+3x12)dx\int \bigg(3x^{\frac{5}{2}}+2x^{\frac{3}{2}}+3x^{\frac{1}{2}}\bigg)dx

=3x52dx+2x32dx+3x12dx3 \int x^{\frac{5}{2}}dx+2 \int x^{\frac{3}{2}}dx+3 \int x^{\frac{1}{2}}dx

=3(x7272)+2(x5252)+3x3232+C3\bigg(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\bigg)+2\bigg(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\bigg)+3\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C

=67x72+45x52+2x32+C\frac{6}{7}x^{\frac{7}{2}}+\frac{4}{5}x^{\frac{5}{2}}+2x^{\frac{3}{2}}+C