Question
Mathematics Question on integral
Find the following integral: ∫cos2x2−3sinxdx
Answer
∫cos2x2−3sinxdx
= ∫(cos2x2−cos2x3sinx)dx
= ∫2sec2xdx−3∫tanxsecxdx
= 2tanx−3secx+C
Find the following integral: ∫cos2x2−3sinxdx
∫cos2x2−3sinxdx
= ∫(cos2x2−cos2x3sinx)dx
= ∫2sec2xdx−3∫tanxsecxdx
= 2tanx−3secx+C