Solveeit Logo

Question

Question: Find the focal length of a meniscus lens which is made of a material of refractive index \({\mu _2}\...

Find the focal length of a meniscus lens which is made of a material of refractive index μ2{\mu _2} for μ1<μ2<μ3{\mu _1} < {\mu _2} < {\mu _3} when light is incident on it. The radius of curvature of both surfaces is R.R. It has two different media of refractive indices μ1{\mu _1} and μ3{\mu _3} respectively on its two sides.

Explanation

Solution

- Hint:- Use the lens maker’s formula,
μ2vμ1u=μ2μ1R\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}
where, uu is the distance of object,
vv is the distance of image and
RR is the radius of curvature
Now, find the object distance for the first surface using this lens maker’s formula.
Next, find the image distance for the second surface using the lens maker’s formula.

Complete Step by Step Solution: -
We will use the Lens Maker’s Formula which is –
μ2vμ1u=μ2μ1R\dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}
Let the refractive index of first surface and second surface be μ1{\mu _1} and μ2{\mu _2} respectively
Therefore, for first surface –
The distance of the object is at uu and image distance is at infinite.
μ2uμ1=μ2μ1R\dfrac{{{\mu _2}}}{u} - \dfrac{{{\mu _1}}}{\infty } = \dfrac{{{\mu _2} - {\mu _1}}}{R}
μ2u=μ2μ1R\dfrac{{{\mu _2}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R}
Finding the object distance uu
Therefore, by transposition and cross – multiplication, we get –
u=μ2Rμ2μ1(1)u = \dfrac{{{\mu _2}R}}{{{\mu _2} - {\mu _1}}} \cdots (1)
This will act as an object for second refraction.
Therefore, for second surface
u=v2u = {v_2}
Now, in lens maker’s formula, we get
μ3vμ2v2=μ3μ2R(2)\dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{v_2}}} = \dfrac{{{\mu _3} - {\mu _2}}}{R} \cdots (2)
Because, u=v2u = {v_2}
So, putting the value of uu from equation (1)(1) in equation (2)(2)
μ3vμ2μ2R(μ2μ1)=μ3μ2R μ3v1R(μ2μ1)=μ3μ2R μ3v=μ3μ2+μ2μ1R μ3v=μ3μ1R  \dfrac{{{\mu _3}}}{v} - \dfrac{{{\mu _2}}}{{{\mu _2}R}}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\\ \therefore \dfrac{{{\mu _3}}}{v} - \dfrac{1}{R}({\mu _2} - {\mu _1}) = \dfrac{{{\mu _3} - {\mu _2}}}{R} \\\ \dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _2} + {\mu _2} - {\mu _1}}}{R} \\\ \dfrac{{{\mu _3}}}{v} = \dfrac{{{\mu _3} - {\mu _1}}}{R} \\\
Now, finding the expression for vv
v=μ3Rμ3μ1v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}
So, the focal length for μ1<μ2<μ3{\mu _1} < {\mu _2} < {\mu _3} is –
Let the focal length be ff
f=v=μ3Rμ3μ1\therefore f = v = \dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}
So, the focal length for this meniscus length is μ3Rμ3μ1\dfrac{{{\mu _3}R}}{{{\mu _3} - {\mu _1}}}.

Note:- The lens which has two spherical curved surfaces is called Meniscus lens. It is convex on one side and concave on the other side. The lens provides a smaller beam diameter in order to reduce the beam waste and spherical aberration.