Solveeit Logo

Question

Question: Find the exponent of 7 in \({}^{100}{{c}_{50}}\). A. 0 B. 1 C. 2 D. 3...

Find the exponent of 7 in 100c50{}^{100}{{c}_{50}}.
A. 0
B. 1
C. 2
D. 3

Explanation

Solution

We first find exponent of 7 in 100! We then find exponent of 7 in 50! Then we find exponent of 7 in 100c50{}^{100}{{c}_{50}}. We are only using 100! and 50! Because 100c50=100!(10050)!50!=100!50!50!{}^{100}{{c}_{50}}=\dfrac{100!}{\left( 100-50 \right)!50!}=\dfrac{100!}{50!50!} which contains 100! and 50!

Complete step by step solution: Before proceeding to the solution, we must remember a very basic formula from binomial theorem which is:
ncr=n!(nr)!r!{}^{n}{{c}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}
We also know the formula to find the exponent of a prime in n! which is :
The exponent of a prime ‘p’ in n! is the largest integer k such that pk{{p}^{k}}divides n!
The exponent of p in n! is given by
=[np]+[np2]+[np3]+=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots
According to the above formula,
Exponent of 7 in 100! is :
=[1007]+[10072]+[10073]+=\left[ \dfrac{100}{7} \right]+\left[ \dfrac{100}{{{7}^{2}}} \right]+\left[ \dfrac{100}{{{7}^{3}}} \right]+\ldots \ldots \ldots
=14+2+0+0+0=14+2+0+0+\ldots \ldots \ldots 0
=16=16
{Where; x is greatest integer function less than or equal to x
Now we find the exponent of 7 in 50! which is
=[507]+[5072]+[5073]+=\left[ \dfrac{50}{7} \right]+\left[ \dfrac{50}{{{7}^{2}}} \right]+\left[ \dfrac{50}{{{7}^{3}}} \right]+\ldots \ldots \ldots
=7+1+0+0+=7+1+0+0+\ldots \ldots \ldots
=8=8
Exponent of 7 in 100c50=100!50!50!=Exp of 7 in 100!(Exp of 7 in 50!){}^{100}{{c}_{50}}=\dfrac{100!}{50!50!}=\dfrac{\text{Exp}\ \text{of}\ 7\ \text{in}\ 100!}{\left( \text{Exp}\ \text{of}\ 7\ \text{in}\ 50! \right)}is
=7167878=71678+8=716716=70=1=\dfrac{{{7}^{16}}}{{{7}^{8}}{{7}^{8}}}=\dfrac{{{7}^{16}}}{{{7}^{8+8}}}=\dfrac{{{7}^{16}}}{{{7}^{16}}}={{7}^{0}}=1.
Exponent of 7 in 100c50{}^{100}{{c}_{50}} is 1.
Correct option (B).

Note: The exponent of p in n! is given by
=[np]+[np2]+[np3]+=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots
This is the direct formula we used to find exponent of a prime in n!
You must also remember one expansion which is very handy in some problems:
(x+y)n=nc0xny0+nc1xn1y1+nc2xn2y2++ncrxnryr+{{\left( x+y \right)}^{n}}={}^{n}{{c}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{c}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{c}_{2}}{{x}^{n-2}}{{y}^{2}}+\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{n-r}}{{y}^{r}}+\ldots \ldots \ldots
general term
+ncrx0yn\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{0}}{{y}^{n}}