Solveeit Logo

Question

Question: Find the exponent of 10 in \[{}^{75}{{C}_{25}}\]....

Find the exponent of 10 in 75C25{}^{75}{{C}_{25}}.

Explanation

Solution

Hint: To find the exponent of 10 in 75C25{}^{75}{{C}_{25}}, we should learn the expansion of nCr{}^{n}{{C}_{r}}, which is equal to n!r!(nr)!\dfrac{n!}{r!\left( n-r \right)!}. Also, we should know that, power of some positive prime integer ‘m’ which is n\le n, in n!n! is [nm]+[nm2]+[nm3]+[nm4]+.....\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+....., where [.]\left[ . \right] represents the greatest integer number.

Complete step-by-step answer:
We know that 75C25{}^{75}{{C}_{25}} can be expressed using the formula nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}, as 75C25=75!25!(7525)!{}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 75-25 \right)!}, where n = 75 and r = 25.
75C25=75!25!(50)!\Rightarrow {}^{75}{{C}_{25}}=\dfrac{75!}{25!\left( 50 \right)!}
Now, in this question, we have to find the exponent of 10 in 75C25{}^{75}{{C}_{25}}, for that we have to find the exponent of 10 in 75!75!, 25!25! and 50!50!.
As we know, 10 can be represented as 10=5×210=5\times 2, so the minimum of the exponents of 5 or 2 will be the exponent of 10 in respective numbers.
Now, let us find the exponent of 5 in 75!75!, as we know that power of some positive prime integer ‘m’ which is n\le n, in n!n! is [nm]+[nm2]+[nm3]+[nm4]+.....\left[ \dfrac{n}{m} \right]+\left[ \dfrac{n}{{{m}^{2}}} \right]+\left[ \dfrac{n}{{{m}^{3}}} \right]+\left[ \dfrac{n}{{{m}^{4}}} \right]+....., where [.]\left[ . \right] represents the greatest integer number.
So exponent of 5 is[755]+[7552]+[7553]+.....\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{{{5}^{2}}} \right]+\left[ \dfrac{75}{{{5}^{3}}} \right]+.....
=[755]+[7525]+[75125]+.....=\left[ \dfrac{75}{5} \right]+\left[ \dfrac{75}{25} \right]+\left[ \dfrac{75}{125} \right]+.....
=[15]+[3]+[35]+.....=\left[ 15 \right]+\left[ 3 \right]+\left[ \dfrac{3}{5} \right]+.....
=15+3+0=15+3+0
=18=18
Now, let us find the exponent of 2 in 75!75!,
So, exponent of 2 is[752]+[7522]+[7523]+.....\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{{{2}^{2}}} \right]+\left[ \dfrac{75}{{{2}^{3}}} \right]+.....
=[752]+[754]+[758]+[7516]+[7532]+[7564]+.....=\left[ \dfrac{75}{2} \right]+\left[ \dfrac{75}{4} \right]+\left[ \dfrac{75}{8} \right]+\left[ \dfrac{75}{16} \right]+\left[ \dfrac{75}{32} \right]+\left[ \dfrac{75}{64} \right]+.....
=[37.5]+[18.75]+[9.3]+[4.6]+[2.3]+[1.15]+[0.57].....=\left[ 37.5 \right]+\left[ 18.75 \right]+\left[ 9.3 \right]+\left[ 4.6 \right]+\left[ 2.3 \right]+\left[ 1.15 \right]+\left[ 0.57 \right].....
=37+18+9+4+2+1+0=37+18+9+4+2+1+0
=71=71
As the exponent of 5 is smaller than exponent of 2, that is, 18, we can say that exponent of 10 in 75!75! is 18.
Similarly, we will find the exponent of 10 in 25!25!.
Now, let us find the exponent of 5 in 25!25!,
So, exponent of 5 is[255]+[2552]+[2553]+.....\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{{{5}^{2}}} \right]+\left[ \dfrac{25}{{{5}^{3}}} \right]+.....
=[255]+[2525]+[25125]+.....=\left[ \dfrac{25}{5} \right]+\left[ \dfrac{25}{25} \right]+\left[ \dfrac{25}{125} \right]+.....
=[5]+[1]+[15]+.....=\left[ 5 \right]+\left[ 1 \right]+\left[ \dfrac{1}{5} \right]+.....
=5+1+0=5+1+0
=6=6
Now, let us find the exponent of 2 in 25!25!,
So, exponent of 2 is[252]+[2522]+[2523]+.....\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{{{2}^{2}}} \right]+\left[ \dfrac{25}{{{2}^{3}}} \right]+.....
=[252]+[254]+[258]+[2516]+[2532]+......=\left[ \dfrac{25}{2} \right]+\left[ \dfrac{25}{4} \right]+\left[ \dfrac{25}{8} \right]+\left[ \dfrac{25}{16} \right]+\left[ \dfrac{25}{32} \right]+......
=[12.5]+[6.25]+[3.12]+[1.56]+[0.78]......=\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......
=12+6+3+1+0=12+6+3+1+0
=22=22
As the exponent of 5 is smaller than exponent of 2, that is, 6, we can say that exponent of 10 in 25!25! is 6.
Similarly, we will find the exponent of 10 in 50!50!.
Now, let us find the exponent of 5 in 50!50!,
So, exponent of 5 is[505]+[5052]+[5053]+.....\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{{{5}^{2}}} \right]+\left[ \dfrac{50}{{{5}^{3}}} \right]+.....
=[505]+[5025]+[50125]+.....=\left[ \dfrac{50}{5} \right]+\left[ \dfrac{50}{25} \right]+\left[ \dfrac{50}{125} \right]+.....
=[10]+[2]+[25]+.....=\left[ 10 \right]+\left[ 2 \right]+\left[ \dfrac{2}{5} \right]+.....
=10+2+0=10+2+0
=12=12
Now, let us find the exponent of 2 in 50!50!,
So, exponent of 2 is[502]+[5022]+[5023]+.....\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{{{2}^{2}}} \right]+\left[ \dfrac{50}{{{2}^{3}}} \right]+.....
=[502]+[504]+[508]+[5016]+[5032]+[5064]+......=\left[ \dfrac{50}{2} \right]+\left[ \dfrac{50}{4} \right]+\left[ \dfrac{50}{8} \right]+\left[ \dfrac{50}{16} \right]+\left[ \dfrac{50}{32} \right]+\left[ \dfrac{50}{64} \right]+......
=[25]+[12.5]+[6.25]+[3.12]+[1.56]+[0.78]......=\left[ 25 \right]+\left[ 12.5 \right]+\left[ 6.25 \right]+\left[ 3.12 \right]+\left[ 1.56 \right]+\left[ 0.78 \right]......
=25+12+6+3+1+0=25+12+6+3+1+0
=47=47
As the exponent of 5 is smaller than the exponent of 2, that is, 12, we can say that exponent of 10 in 50!50! is 12.
Now, to find the exponent of 10 in 75C25{}^{75}{{C}_{25}} which is equal to 75!25!50!\dfrac{75!}{25!50!}, we will put the exponents of respective factorials at their respective places, so we get,
Exponent of 10 in 75C25{}^{75}{{C}_{25}} = 1018106×1012\dfrac{{{10}^{18}}}{{{10}^{6}}\times {{10}^{12}}}
=10181018=\dfrac{{{10}^{18}}}{{{10}^{18}}}
=100={{10}^{0}}
Hence, the exponent of 10 in 75C25{}^{75}{{C}_{25}} is 0.

Note: The possible mistake one can make is while finding the exponent of 10 in 75!75!, 25!25! and 50!50!, that is, one can find an exponent of 10 without finding an exponent of 5 and 2 which will lead to the wrong solution. Also, one can mistake by writing 100{{10}^{0}} as 1, which can be confusing. Because 100{{10}^{0}} means an exponent of 10 in 75C25{}^{75}{{C}_{25}} is 0.