Question
Mathematics Question on Binomial theorem
Find the expansion of (3x2–2ax+3a2)3 using binomial theorem.
Answer
Using Binomial Theorem, the given expression (3x2−2ax+3a2)3 can be expanded as
[(3x2−2ax)+3a2]3
= 3C0(3x2−2ax)3+3C1(3x2−2ax)2(3a2)+3C2(3x2−2ax)(3a2)2+3C3(3a2)2
=(3x2−2ax)3+3(9x4−12ax3+4a2x2)(3a2)+3(3x2−2ax)(9a4)+27a6
=(3x2−2ax)3+81a2x4−108a3x3+36a4x2+81a4x2−54a5x+27a6
=(3x2−2ax)3+81a2x4−108a3x3+117a4x2−54a5x+27a6...(1)
Again by using Binomial Theorem, we obtain
(3x2−2ax)3
=3C0(3x2)3−3C1(3x2)2(2ax)+3C2(3x2)(2ax)2−3C3(2ax)3
=27x6−3(9x4)(2ax)+3(3x2)(4a2x2)−8a3x3
=27x6−54ax5+36a2x4+−8a3x3...(2)
From (1) and (2), we obtain
(3x2−2ax+3a2)3
=27x6−54ax5+36a2x4−8a3x3+81a2x4−108a3x3+117a4x2−54a5x+27a6
=27x6−54ax5+117a2x4+−116a3x3+117a4x2−54a5+27a6