Solveeit Logo

Question

Question: Find the expansion of \({{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}\) using binomial theorem....

Find the expansion of (3x22ax+3a2)3{{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}} using binomial theorem.

Explanation

Solution

Hint: So we have to find the expansion of (3x22ax+3a2)3{{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}} using binomial theorem. Take a value aa and bb from (3x22ax+3a2)3{{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}. Use binomial theorem. You will get the answer.

Complete step-by-step answer:
According to the binomial theorem, the (r+1)th{{(r+1)}^{th}} term in the expansion of (a+b)n{{(a+b)}^{n}} is,
Tr+1=nCranrbr{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}
The above term is a general term or (r+1)th{{(r+1)}^{th}} term. The total number of terms in the binomial expansion (a+b)n{{(a+b)}^{n}}is(n+1)(n+1), i.e. one more than the exponent nn.

Binomial theorem states that for any positive integer nn, the nn power of the sum of two numbers a and b may be expressed as the sum of (n+1)(n+1) terms of the form.

The final expression follows from the previous one by the symmetry of aa and bb in the first expression, and by comparison, it follows that the sequence of binomial coefficients in the formula is symmetrical.

A simple variant of the binomial formula is obtained by substituting 11 for bb so that it involves only a single variable.
In the Binomial expression, we have
(a+b)n==nC0an(b)0+nC1an1(b)1+nC2an2(b)2+nC3an3(b)3+...........+nCna0(b)n{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}
So the coefficients nC0,nC1,............,nCn{}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}} are known as binomial or combinatorial coefficients.

You can see them nCr{}^{n}{{C}_{r}} being used here which is the binomial coefficient. The sum of the binomial coefficients will be 2n{{2}^{n}} because, we know that,
r=0n(nCr)=2n\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to 2n1{{2}^{n-1}}.

The middle term depends upon the value of nn,
It nn is even: then the total number of terms in the expansion of(a+b)n{{(a+b)}^{n}} is n+1n+1 (odd).
It nn is odd: then the total number of terms in the expansion of (a+b)n{{(a+b)}^{n}} is n+1n+1 (even).

It nnis a positive integer,
(ab)n==nC0an(b)0nC1an1(b)1+nC2an2(b)2nC3an3(b)3+...........+nCna0(b)n{{(a-b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}-{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}
For binomial expansion first, let's do a small pairing inside the bracket.
So now leta=3x2a=3{{x}^{2}}andb=a(2x3a)b=a(2x-3a).
Now let's expand this as is normally done for two-digit expansion.
[3x2a(2x3a)]3=(3x2)33(3x2)2×a(2x3a)+3(3x2)×a2(2x3a)2a3(2x3a)3{{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}={{(3{{x}^{2}})}^{3}}-3{{(3{{x}^{2}})}^{2}}\times a(2x-3a)+3(3{{x}^{2}})\times {{a}^{2}}{{(2x-3a)}^{2}}-{{a}^{3}}{{(2x-3a)}^{3}}
So simplifying in a simple manner we get,
[3x2a(2x3a)]3=27x63(9x4)(2ax3a2)+9a2x2(4x2+9a212ax)a3(8x327a33.4x2.3a+3.9a2.2x) =27x627x4(2ax3a2)+36a2x4+81a4x2108a3x38a3x3+27a6+36a4x254a5x =27x654ax5+81a2x4+36a2x4+117a4x2116a3x3+27a654a5x =27x654ax5+117a2x4116a3x3+117a4x254a5x+27a6 \begin{aligned} & {{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}=27{{x}^{6}}-3(9{{x}^{4}})(2ax-3{{a}^{2}})+9{{a}^{2}}{{x}^{2}}(4{{x}^{2}}+9{{a}^{2}}-12ax)-{{a}^{3}}(8{{x}^{3}}-27{{a}^{3}}-3.4{{x}^{2}}.3a+3.9{{a}^{2}}.2x) \\\ & =27{{x}^{6}}-27{{x}^{4}}(2ax-3{{a}^{2}})+36{{a}^{2}}{{x}^{4}}+81{{a}^{4}}{{x}^{2}}-108{{a}^{3}}{{x}^{3}}-8{{a}^{3}}{{x}^{3}}+27{{a}^{6}}+36{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x \\\ & =27{{x}^{6}}-54a{{x}^{5}}+81{{a}^{2}}{{x}^{4}}+36{{a}^{2}}{{x}^{4}}+117{{a}^{4}}{{x}^{2}}-116{{a}^{3}}{{x}^{3}}+27{{a}^{6}}-54{{a}^{5}}x \\\ & =27{{x}^{6}}-54a{{x}^{5}}+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}} \\\ \end{aligned}

The Expansion (3x22ax+3a2)3{{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}is27x654x5a+117a2x4116a3xe3+117a4x254a5x+27a627{{x}^{6}}-54{{x}^{5}}a+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{ e3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}}.

Note: Read the question in a careful manner. Don’t jumble within the concepts. You should know what to select asaa and bb. We had assumed a=3x2a=3{{x}^{2}} and b=a(2x3a)b=a(2x-3a). So you can assume it in your way. But keep in mind there should not be any confusion.