Solveeit Logo

Question

Question: Find the exact value of the six trigonometric functions of \(\theta \) for the point\(\left( { - 4, ...

Find the exact value of the six trigonometric functions of θ\theta for the point(4,6)\left( { - 4, - 6} \right).

Explanation

Solution

We know that for a right angled triangle with angle θ\theta

sinθ=opposite  sidehypotenuse cosθ=adjacent  sidehypotenuse tanθ=opposite  sideadjacent  side \sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\\ \cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\\ \tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\\

So by using the above relations and other basic trigonometric identities we can find all the six trigonometric functions of θ\theta for the point(4,6)\left( { - 4, - 6} \right).

Complete step by step solution:
Given
(4,6)..................................(i)\left( { - 4, - 6} \right)..................................\left( i \right)
Now as given in (i) we have the point (4,6)\left( { - 4, - 6} \right) at which we have to find the all 6 trigonometric functions.
So in order to find the 6 trigonometric functions at (4,6) \left( { - 4, - 6} \right) we first have to construct a right angled triangle.
So for constructing a right angled triangle let us take:
x=4 y=6  x = - 4 \\\ y = - 6 \\\

Such that we have to findcc.
Also by Pythagoras theorem we can write:
x2+y2=c2......................(ii){x^2} + {y^2} = {c^2}......................\left( {ii} \right)
On substituting x  and  yx\;{\text{and}}\;ywe can write:
(4)2+(6)2=c2 c2=(4)2+(6) c2=16+36 c2=52 c=213.........................(iii)  {\left( { - 4} \right)^2} + {\left( { - 6} \right)^2} = {c^2} \\\ \Rightarrow {c^2} = {\left( { - 4} \right)^2} + \left( { - 6} \right) \\\ \Rightarrow {c^2} = 16 + 36 \\\ \Rightarrow {c^2} = 52 \\\ \Rightarrow c = 2\sqrt {13} .........................\left( {iii} \right) \\\
Now we have:
adjacent  side=4 opposite  side  =6 hypotenuse  =213  {\text{adjacent}}\;{\text{side}} = - 4 \\\ {\text{opposite}}\;{\text{side}}\; = - 6 \\\ {\text{hypotenuse}}\; = 2\sqrt {13} \\\
So in order to find the first 3 basic trigonometric functions we have the formulas:

sinθ=opposite  sidehypotenuse cosθ=adjacent  sidehypotenuse tanθ=opposite  sideadjacent  side \sin \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\\ \cos \theta = \dfrac{{{\text{adjacent}}\;{\text{side}}}}{{{\text{hypotenuse}}}} \\\ \tan \theta = \dfrac{{{\text{opposite}}\;{\text{side}}}}{{{\text{adjacent}}\;{\text{side}}}} \\\

On substituting the values we have found from the right angled triangle we get:

sinθ=6213=313=31313 cosθ=4213=213=21313 tanθ=64=32 \sin \theta = \dfrac{{ - 6}}{{2\sqrt {13} }} = - \dfrac{3}{{\sqrt {13} }} = - 3\dfrac{{\sqrt {13} }}{{13}} \\\ \cos \theta = \dfrac{{ - 4}}{{2\sqrt {13} }} = - \dfrac{2}{{\sqrt {13} }} = - 2\dfrac{{\sqrt {13} }}{{13}} \\\ \tan \theta = \dfrac{{ - 6}}{{ - 4}} = \dfrac{3}{2} \\\

Since the other 3 trigonometric functions are inverse in nature to the above mentioned trigonometric functions, we just have to take the reciprocal of the above found values.
Now to find the other 3 trigonometric formulas we have the formulas:

cosecθ=1sinθ secθ=1cosθ cotθ=1tanθ {\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} \\\ \sec \theta = \dfrac{1}{{\cos \theta }} \\\ \cot \theta = \dfrac{1}{{\tan \theta }} \\\

On substituting we get:

cosecθ=1sinθ=133×13=133 secθ=1cosθ=132×13=132 cotθ=1tanθ=23 {\text{cosec}}\theta = \dfrac{1}{{\sin \theta }} = - \dfrac{{13}}{{3 \times \sqrt {13} }} = - \dfrac{{\sqrt {13} }}{3} \\\ \sec \theta = \dfrac{1}{{\cos \theta }} = - \dfrac{{13}}{{2 \times \sqrt {13} }} = - \dfrac{{\sqrt {13} }}{2} \\\ \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{2}{3} \\\

Now we have found the values of all the 6 trigonometric formulas.
**Therefore our six trigonometric functions of θ\theta for the point (4,6)\left( { - 4, - 6} \right) are:

\sin \theta = - 3\dfrac{{\sqrt {13} }}{{13}} \\\ \cos \theta = - 2\dfrac{{\sqrt {13} }}{{13}} \\\ \tan \theta = \dfrac{3}{2} \\\ {\text{cosec}}\theta = - \dfrac{{\sqrt {13} }}{3} \\\ \sec \theta = - \dfrac{{\sqrt {13} }}{2} \\\ \cot \theta = \dfrac{2}{3} \\\ $$** **Note:** Some other equations needed for solving trigonometric problems are: $$\begin{array}{*{20}{l}} {\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\\ {\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1- 2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1} \end{array}$$ While solving problems similar to the above ones one should take care while forming the triangle and finding the values of its sides. Also while representing the values of trigonometric functions one should not forget to rationalize the denominator.