Solveeit Logo

Question

Question: Find the exact value of $\cot(\frac{\pi}{7}) + \cot(\frac{2\pi}{7}) - \cot(\frac{3\pi}{7})$....

Find the exact value of cot(π7)+cot(2π7)cot(3π7)\cot(\frac{\pi}{7}) + \cot(\frac{2\pi}{7}) - \cot(\frac{3\pi}{7}).

Answer

7\sqrt{7}

Explanation

Solution

Let the given expression be EE. We have E=cot(π7)+cot(2π7)cot(3π7)E = \cot\left(\frac{\pi}{7}\right) + \cot\left(\frac{2\pi}{7}\right) - \cot\left(\frac{3\pi}{7}\right) We know that for α=π7\alpha = \frac{\pi}{7}, we have 7α=π7\alpha = \pi. This implies: cot(4α)=cot(π3α)=cot(3α)\cot(4\alpha) = \cot(\pi - 3\alpha) = -\cot(3\alpha) cot(5α)=cot(π2α)=cot(2α)\cot(5\alpha) = \cot(\pi - 2\alpha) = -\cot(2\alpha) cot(6α)=cot(πα)=cot(α)\cot(6\alpha) = \cot(\pi - \alpha) = -\cot(\alpha)

The expression can be rewritten by substituting cot(3α)=cot(4α)-\cot(3\alpha) = \cot(4\alpha): E=cot(π7)+cot(2π7)+cot(4π7)E = \cot\left(\frac{\pi}{7}\right) + \cot\left(\frac{2\pi}{7}\right) + \cot\left(\frac{4\pi}{7}\right) This is a specific case of a known identity related to the cotangents of angles in an arithmetic progression. For n=7n=7, the sum cot(πn)+cot(2πn)+cot(4πn)\cot(\frac{\pi}{n}) + \cot(\frac{2\pi}{n}) + \cot(\frac{4\pi}{n}) is equal to n\sqrt{n}.

Therefore, E=cot(π7)+cot(2π7)+cot(4π7)=7E = \cot\left(\frac{\pi}{7}\right) + \cot\left(\frac{2\pi}{7}\right) + \cot\left(\frac{4\pi}{7}\right) = \sqrt{7} The exact value of the expression is 7\sqrt{7}.