Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the equations of the tangent and normal to the hyperbola x2a2y2b2\frac{x^2}{a^2}-\frac{y^2}{b^2}=1at the point (x0,y0).

Answer

Find the equations of the tangent and normal to the hyperbola x2/a2-y2/b2=1 at the point (x0,y0).

Differentiating x2a2y2b2\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 with respect to x, we have:

2xa22yb2dydx=0\frac{2x}{a^2}-\frac{2y}{b^2}\frac{dy}{dx}=0

2yb2dydx=2xa2\frac{2y}{b^2}\frac{dy}{dx}=\frac{2x}{a^2}

dydx=b2xa2x\frac{dy}{dx}=\frac{b^2x}{a^2x}

Therefore, the slope of the tangent at (x0,y0) is dydx\frac{dy}{dx}](xo.yo)=b2x0a2y0\frac{b^2x_0}{a^2y_0}.

Then, the equation of the tangent at (xo,yo) is given by,

y-y0=b2x0a2yy0a2y02=b2xx0b2x02\frac{b^2x_0}{a^2yy_0}-a^2y^2_0=b^2xx_0-b^2x^2_0

b2xx0a2yy0b2x02+a2y2=0b^2xx_0-a^2yy_0-b^2x^2_0+a^2y^2=0

xx0a2yy0b21=0\frac{xx_0}{a^2}-\frac{yy_0}{b^2}-1=0

Hence, the equation of the normal at (xo,yo) is given by,

=yy0a2y0+(xx)b2x0=0y-\frac{y_0}{a^2y_0}+\frac{(x-x)}{b^2x_0}=0