Solveeit Logo

Question

Question: Find the equations of the straight lines which touch both the circles \[{x^2} + {y^2} = 4\] and \[{\...

Find the equations of the straight lines which touch both the circles x2+y2=4{x^2} + {y^2} = 4 and (x4)2+y2=1{\left( {x - 4} \right)^2} + {y^2} = 1.

Explanation

Solution

First of all, find the centre and radius of the given circles and find the internal and external centre of similitudes. Then find the pair of transverse common tangents and direct common tangents to the given circles. Use this concept to reach the solution.

**
**

Complete step-by-step answer:

Given circle equations are x2+y2=4{x^2} + {y^2} = 4 and (x4)2+y2=1{\left( {x - 4} \right)^2} + {y^2} = 1

We know that for the circle equation x2+y2=a2{x^2} + {y^2} = {a^2} the centre of the circle is (0,0)\left( {0,0} \right) and radius of the circle is aa.

So, for the circle equation x2+y2=4{x^2} + {y^2} = 4 the centre is C1(0,0){C_1}\left( {0,0} \right) and radius is r1=2{r_1} = 2.

We know that for the circle equation (xh)2+(yk)2=a2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2} the centre of the circle is (h,k)\left( {h,k} \right) and radius of the circle is aa.

So, for the circle equation (x4)2+y2=1{\left( {x - 4} \right)^2} + {y^2} = 1 the centre is C2(4,0){C_2}\left( {4,0} \right) and radius is r2=1{r_2} = 1.

We know that the distance between the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is given by (x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} .

Now, consider the distance between the centres of the two circles i.e.,

C1C2=(40)2+(00)2=4{C_1}{C_2} = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} = 4

As C1C2>r1+r24>2+1{C_1}{C_2} > {r_1} + {r_2} \Rightarrow 4 > 2 + 1, there will be four common tangents to the circles as shown in the below figure:

We know that if a point CC divides the two points A(x1,y1)A\left( {{x_1},{y_1}} \right) and B(x2,y2)B\left( {{x_2},{y_2}} \right) in the ratio p:qp:q the point CC is given by C=(px2+qx1p+q,py2+qy1p+q)C = \left( {\dfrac{{p{x_2} + q{x_1}}}{{p + q}},\dfrac{{p{y_2} + q{y_1}}}{{p + q}}} \right).

The internal centre of similitude, A1{A_1} divides C1C2{C_1}{C_2} in the ratio 2:12:1 internally.

A1=(2(4)+1(0)2+1,2(0)+1(0)2+1) A1=(83,0)  \Rightarrow {A_1} = \left( {\dfrac{{2\left( 4 \right) + 1\left( 0 \right)}}{{2 + 1}},\dfrac{{2\left( 0 \right) + 1\left( 0 \right)}}{{2 + 1}}} \right) \\\ \therefore {A_1} = \left( {\dfrac{8}{3},0} \right) \\\

We know that the equation to the pair of transverse common tangents at point (h,k)\left( {h,k} \right) to the circle x2+y2=a2{x^2} + {y^2} = {a^2} is given by (xh+yka2)2=(h2+k2a2)(x2+y2a2){\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)

So, equation to the pair of transverse common tangents at (83,0)\left( {\dfrac{8}{3},0} \right) to the circle x2+y2=4{x^2} + {y^2} = 4 is

(x(83)+y(0)4)2=((83)2+(0)24)(x2+y24) (8x34)2=(6494)(x2+y24)  \Rightarrow {\left( {x\left( {\dfrac{8}{3}} \right) + y\left( 0 \right) - 4} \right)^2} = \left( {{{\left( {\dfrac{8}{3}} \right)}^2} + {{\left( 0 \right)}^2} - 4} \right)\left( {{x^2} + {y^2} - 4} \right) \\\ \Rightarrow {\left( {\dfrac{{8x}}{3} - 4} \right)^2} = \left( {\dfrac{{64}}{9} - 4} \right)\left( {{x^2} + {y^2} - 4} \right) \\\

Opening the terms inside the brackets, we have

64x292(4)(8x3)+16=(64369)(x2+y24) 64x2964x3+16=(289)(x2+y24) 64x2192x+1449=28x2+28y21129  \Rightarrow \dfrac{{64{x^2}}}{9} - 2\left( 4 \right)\left( {\dfrac{{8x}}{3}} \right) + 16 = \left( {\dfrac{{64 - 36}}{9}} \right)\left( {{x^2} + {y^2} - 4} \right) \\\ \Rightarrow \dfrac{{64{x^2}}}{9} - \dfrac{{64x}}{3} + 16 = \left( {\dfrac{{28}}{9}} \right)\left( {{x^2} + {y^2} - 4} \right) \\\ \Rightarrow \dfrac{{64{x^2} - 192x + 144}}{9} = \dfrac{{28{x^2} + 28{y^2} - 112}}{9} \\\

Cancelling and grouping the terms, we have

64x228x228y2192x+144+112=0 36x2192x+256=28y2 (6x16)2=28y2  \Rightarrow 64{x^2} - 28{x^2} - 28{y^2} - 192x + 144 + 112 = 0 \\\ \Rightarrow 36{x^2} - 192x + 256 = 28{y^2} \\\ \Rightarrow {\left( {6x - 16} \right)^2} = 28{y^2} \\\

Rooting on both sides, we get

6x16=±28y 6x16=±27y 3x±7y8=0  \Rightarrow 6x - 16 = \pm \sqrt {28} y \\\ \Rightarrow 6x - 16 = \pm 2\sqrt 7 y \\\ \therefore 3x \pm \sqrt 7 y - 8 = 0 \\\

The external centre of similitude, A2{A_2} divides C1C2{C_1}{C_2} in the ratio 2:12:1 externally.

A2=(2(4)1(0)21,2(0)1(0)21) A2=(8,0)  \Rightarrow {A_2} = \left( {\dfrac{{2\left( 4 \right) - 1\left( 0 \right)}}{{2 - 1}},\dfrac{{2\left( 0 \right) - 1\left( 0 \right)}}{{2 - 1}}} \right) \\\ \therefore {A_2} = \left( {8,0} \right) \\\

We know that the equation to the pair of direct common tangents at point (h,k)\left( {h,k} \right) to the circle x2+y2=a2{x^2} + {y^2} = {a^2} is given by (xh+yka2)2=(h2+k2a2)(x2+y2a2){\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)

So, equation to the pair of direct common tangents at (8,0)\left( {8,0} \right) to the circle x2+y2=4{x^2} + {y^2} = 4 is

(x(8)+y(0)4)2=((8)2+(0)24)(x2+y24) (8x4)2=(644)(x2+y24)  \Rightarrow {\left( {x\left( 8 \right) + y\left( 0 \right) - 4} \right)^2} = \left( {{{\left( 8 \right)}^2} + {{\left( 0 \right)}^2} - 4} \right)\left( {{x^2} + {y^2} - 4} \right) \\\ \Rightarrow {\left( {8x - 4} \right)^2} = \left( {64 - 4} \right)\left( {{x^2} + {y^2} - 4} \right) \\\

Opening the terms inside the brackets, we have

64x22(4)(8x)+16=(60)(x2+y24) 64x264x+16=60x2+60y2240 64x260x260y264x+16+240=0 4x260y264x+256=0  \Rightarrow 64{x^2} - 2\left( 4 \right)\left( {8x} \right) + 16 = \left( {60} \right)\left( {{x^2} + {y^2} - 4} \right) \\\ \Rightarrow 64{x^2} - 64x + 16 = 60{x^2} + 60{y^2} - 240 \\\ \Rightarrow 64{x^2} - 60{x^2} - 60{y^2} - 64x + 16 + 240 = 0 \\\ \Rightarrow 4{x^2} - 60{y^2} - 64x + 256 = 0 \\\

Grouping and cancelling the common terms, we have

4(x215y216x+64)=0 x216x+64=15y2 (x8)2=15y2  \Rightarrow 4\left( {{x^2} - 15{y^2} - 16x + 64} \right) = 0 \\\ \Rightarrow {x^2} - 16x + 64 = 15{y^2} \\\ \Rightarrow {\left( {x - 8} \right)^2} = 15{y^2} \\\

Rooting on both sides, we get

x8=±15y x±15y8=0  \Rightarrow x - 8 = \pm \sqrt {15} y \\\ \therefore x \pm \sqrt {15} y - 8 = 0 \\\

Thus, the equation of straight lines is 3x+7y8=0,3x7y8=0,x+15y8=0 and x15y8=03x + \sqrt 7 y - 8 = 0,3x - \sqrt 7 y - 8 = 0,x + \sqrt {15} y - 8 = 0{\text{ and }}x - \sqrt {15} y - 8 = 0.

Note: The equation to the pair of transverse common tangents at point (h,k)\left( {h,k} \right) to the circle x2+y2=a2{x^2} + {y^2} = {a^2} is given by (xh+yka2)2=(h2+k2a2)(x2+y2a2){\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right). The equation to the pair of direct common tangents at point (h,k)\left( {h,k} \right) to the circle x2+y2=a2{x^2} + {y^2} = {a^2} is given by (xh+yka2)2=(h2+k2a2)(x2+y2a2){\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right).