Solveeit Logo

Question

Question: Find the equation to the tangent to the circle \({{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}\) ...

Find the equation to the tangent to the circle x2+y2=a2{{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2} which
Is parallel to the straight line y = mx + c
Is perpendicular to the straight line y = mx + c
Passes through the point (b, 0)
Make with the axes a triangle whose area is a2{{\text{a}}^2}.

Explanation

Solution

Hint: In order to deduct the tangent equations for these specific cases, we refer to the formulae of tangent equation to a circle equation and pick the appropriate one.

Complete step-by-step answer:
Parallel to the line y = mx + c
We know parallel lines have the same slopes, hence the slope of the equation of the tangent to be found is also m.
We know the tangent to a circle equation x2+y2=a2{{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}for the line of the form y = mx + c is y = mx ± a[1+m2]{\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} , where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is y = mx ± a[1+m2]{\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} .
mx - y±a[1+m2]=0\Rightarrow {\text{mx - y}} \pm {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} = 0

Perpendicular to the line y = mx + c
We know, perpendicular lines have slopes such that their product is -1, i.e. m1×m2=1{{\text{m}}_1} \times {{\text{m}}_2} = - 1, where m1{{\text{m}}_1} and m2{{\text{m}}_2}are the slopes of each line respectively.
The slope of the given line is m, hence the slope of the equation of the tangent to be found is 1m - \dfrac{1}{{\text{m}}}.
We know the tangent to a circle equation x2+y2=a2{{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}for the line of the form y = mx + c is y = mx ± a[1+m2]{\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} , where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is y = - 1m± a[1+(1m)2]{\text{y = - }}\dfrac{1}{{\text{m}}}{\text{x }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\left( { - \dfrac{1}{{\text{m}}}} \right)}^2}} \right]}
y = - xm± a[1+1m2]\Rightarrow {\text{y = - }}\dfrac{{\text{x}}}{{\text{m}}} \pm {\text{ a}}\sqrt {\left[ {1 + \dfrac{1}{{{{\text{m}}^2}}}} \right]}
my = - x±a[m2+1] x + my a[m2+1]=0  \Rightarrow {\text{my = - x}} \pm {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} \\\ \Rightarrow {\text{x + my }} \mp {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} = 0 \\\

Passes through the point (b, 0)
We know the tangent to a circle equation x2+y2=a2{{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}at a point (x1,y1)\left( {{{\text{x}}_1}{\text{,}}{{\text{y}}_1}} \right)is given by xx1+yy1=a2{\text{x}}{{\text{x}}_1} + {\text{y}}{{\text{y}}_1} = {{\text{a}}^2}where a is the radius of the circle.
Hence, the tangent equation to the circle through (b, 0) is x(b)+y(0)=a2{\text{x}}\left( {\text{b}} \right) + {\text{y}}\left( 0 \right) = {{\text{a}}^2}
xb = a2\Rightarrow {\text{xb = }}{{\text{a}}^2}.

Makes with the axes a triangle whose area is a2{{\text{a}}^2}
We know the tangent to a circle equation x2+y2=a2{{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2} for the line of the form y = mx + c is y = mx ± a[1+m2]{\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} , where m is the slope of the line and a is the radius of the circle.
y = mx + a[1+m2]{\text{y = mx + a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]}
(We consider only the positive sign and divide the entire equation with a[1+m2]{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} )

ya[1+m2] = mxa[1+m2] + a[1+m2]a[1+m2] xa[1+m2]m+ya[1+m2]=1 - - - - (1)  \Rightarrow \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ = }}\dfrac{{{\text{mx}}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ + }}\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} \\\ \Rightarrow \dfrac{{\text{x}}}{{\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}}} + \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} = 1{\text{ - - - - }}\left( 1 \right) \\\

We know the area formed by the line of the form xa+yb=1\dfrac{{\text{x}}}{{\text{a}}} + \dfrac{{\text{y}}}{{\text{b}}} = 1 with the axes is 12ab|\dfrac{1}{2}|{\text{ab|}}, where a and b are x and y intercepts respectively.
Comparing this with equation (1) we get a = a[1+m2]m\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}and b = a[1+m2]{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]}
Hence area of triangle formed = 12×a[1+m2]m|×a[1+m2]\dfrac{1}{2} \times \dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{| - {\text{m|}}}} \times {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]}
= 12×(a[1+m2])2m|\dfrac{1}{2} \times \dfrac{{{{\left( {{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} } \right)}^2}}}{{| - {\text{m|}}}}
= 12×a2(1+m2)m|\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}
Given area of triangles formed = a2{{\text{a}}^2}
Therefore, a2{{\text{a}}^2}= 12×a2(1+m2)m|\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}
a1+m2m=±2a2 m2+1±2m = 0 m = - 1 or 1  \Rightarrow \dfrac{{{\text{a}}\sqrt {1 + {{\text{m}}^2}} }}{{\text{m}}} = \pm {\text{2}}{{\text{a}}^2} \\\ \Rightarrow {{\text{m}}^2} + 1 \pm {\text{2m = 0}} \\\ \Rightarrow {\text{m = - 1 or 1}} \\\
Hence the equation of the tangent forming an area a2{{\text{a}}^2}with the axes is
y = ±x±a1+1 x±y = ±a2  {\text{y = }} \pm {\text{x}} \pm {\text{a}}\sqrt {1 + 1} \\\ \Rightarrow {\text{x}} \pm {\text{y = }} \pm {\text{a}}\sqrt 2 \\\

Note – In order to solve this type of problems the key is to have good knowledge in the concepts of parallel and perpendicular lines. Also the tangent equation to a circle formula with respect to the specific conditions.
Some additional formulae:
The tangent to a circle equation of the form x2+y2+2gx + 2fy + c = 0{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}at point (x1,y1)\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)isxx1 + yy1 + g(x + x1)+f(y + y1)+c = 0{\text{x}}{{\text{x}}_1}{\text{ + y}}{{\text{y}}_1}{\text{ + g}}\left( {{\text{x + }}{{\text{x}}_1}} \right) + {\text{f}}\left( {{\text{y + }}{{\text{y}}_1}} \right) + {\text{c = 0}}.
The tangent to a circle equation of the form x2+y2 = a2{{\text{x}}^2} + {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}at point (acosθ,asinθ)\left( {{\text{acos}}\theta ,{\text{asin}}\theta } \right) is xcosθ + ysinθ = a{\text{xcos}}\theta {\text{ + ysin}}\theta {\text{ = a}}.