Solveeit Logo

Question

Question: Find the equation, the length, and the common tangent to the two hyperbolas \(\dfrac{{{x}^{2}}}{{{a}...

Find the equation, the length, and the common tangent to the two hyperbolas x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1.

Explanation

Solution

Hint: Use the condition that a line y = mx + c is a tangent to a hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 if a2m2b2=c2{{a}^{2}}{{m}^{2}}-{{b}^{2}}={{c}^{2}} and the line y = mx + c is a tangent to the hyperbola y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1 if a2b2m2=c2{{a}^{2}}-{{b}^{2}}{{m}^{2}}={{c}^{2}}.

Complete step by step answer:
Before proceeding with the question, we must know the formula like distance formula, condition of tangency to a hyperbola.
If we have given a hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1, then, a and b are the respectively the major and minor axis of the hyperbola. In this question, we have been given that the two hyperbolas x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 and y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1. We have to find the length and equation of the common tangent.
Let us assume y to be the common tangent to the given hyperbolas, y = mx + c.
We know that condition for y = mx + c to be the tangent of the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is a2m2b2=c2{{a}^{2}}{{m}^{2}}-{{b}^{2}}={{c}^{2}} and for hyperbola y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1, it is a2b2m2=c2{{a}^{2}}-{{b}^{2}}{{m}^{2}}={{c}^{2}}.
So, we can number the equations as:
For hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1, a2m2b2=c2.....(i){{a}^{2}}{{m}^{2}}-{{b}^{2}}={{c}^{2}}.....(i)
For hyperbola y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1, a2b2m2=c2.....(ii){{a}^{2}}-{{b}^{2}}{{m}^{2}}={{c}^{2}}.....(ii)
Equating equations (i) and (ii) we get,
a2m2b2=a2b2m2{{a}^{2}}{{m}^{2}}-{{b}^{2}}={{a}^{2}}-{{b}^{2}}{{m}^{2}}
m2(a2+b2)=a2+b2\Rightarrow {{m}^{2}}\left( {{a}^{2}}+{{b}^{2}} \right)={{a}^{2}}+{{b}^{2}}
Cancelling out the similar terms we get,
m2=1\Rightarrow {{m}^{2}}=1
m=±1\therefore m=\pm 1
Putting the value of m2{{m}^{2}} in equation (i) we get,
c2=a2b2{{c}^{2}}={{a}^{2}}-{{b}^{2}}
c=±a2b2\therefore c=\pm \sqrt{{{a}^{2}}-{{b}^{2}}}
Putting the values of mm and cc in the equation of the line y = mx + c, we get the equation of tangent as,
y=±x±a2b2y=\pm x\pm \sqrt{{{a}^{2}}-{{b}^{2}}}
We can write the equation of tangent by dividing both sides by a2b2\sqrt{{{a}^{2}}-{{b}^{2}}} as ya2b2=±xa2b2+1\dfrac{y}{\sqrt{{{a}^{2}}-{{b}^{2}}}}=\pm \dfrac{x}{\sqrt{{{a}^{2}}-{{b}^{2}}}}+1
Collecting the variables on left-hand-side we get,
ya2b2xa2b2=1.....(iii)\dfrac{y}{\sqrt{{{a}^{2}}-{{b}^{2}}}}\mp \dfrac{x}{\sqrt{{{a}^{2}}-{{b}^{2}}}}=1.....(iii)
We know that the tangent to the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) is given by xx1a2+yy1b2=1\dfrac{x{{x}_{1}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1.
Therefore, on comparing equation (iii) with xx1a2+yy1b2=1\dfrac{x{{x}_{1}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1 we get the value of x1=±a2a2b2{{x}_{1}}=\pm \dfrac{{{a}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}} andy1=±b2a2b2{{y}_{1}}=\pm \dfrac{{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}.
Similarly, on comparing for hyperbola y2a2x2b2=1\dfrac{{{y}^{2}}}{{{a}^{2}}}-\dfrac{{{x}^{2}}}{{{b}^{2}}}=1 we get, x2=±b2a2b2,y2=±a2a2b2{{x}_{2}}=\pm \dfrac{{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}},{{y}_{2}}=\pm \dfrac{{{a}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}.
Now, we have already found out points (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right). Therefore, the length of common tangent can be found by using the distance formula given by
(x2x1)2+(y2y1)2\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}
(±b2a2b2(±a2a2b2))2+(±a2a2b2(±b2a2b2))\Rightarrow \sqrt{{{\left( \pm \dfrac{{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}-\left( \pm \dfrac{{{a}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \right) \right)}^{2}}+\left( \pm \dfrac{{{a}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}-\left( \pm \dfrac{{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \right) \right)}
(b4a2b2+(a4a2b2)+2a2b2a2b2)+(a4a2b2+(b4a2b2)+2a2b2a2b2)\Rightarrow \sqrt{\left( \dfrac{{{b}^{4}}}{{{a}^{2}}-{{b}^{2}}}+\left( \dfrac{{{a}^{4}}}{{{a}^{2}}-{{b}^{2}}} \right)+\dfrac{2{{a}^{2}}{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}} \right)+\left( \dfrac{{{a}^{4}}}{{{a}^{2}}-{{b}^{2}}}+\left( \dfrac{{{b}^{4}}}{{{a}^{2}}-{{b}^{2}}} \right)+\dfrac{2{{a}^{2}}{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}} \right)}
Collecting the same terms together we get:
(2b4a2b2+(2a4a2b2)+4a2b2a2b2)\Rightarrow \sqrt{\left( \dfrac{2{{b}^{4}}}{{{a}^{2}}-{{b}^{2}}}+\left( \dfrac{2{{a}^{4}}}{{{a}^{2}}-{{b}^{2}}} \right)+\dfrac{4{{a}^{2}}{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}} \right)}
Taking out 2 as common we get:
2(a4+b4+2a2b2)a2b2\Rightarrow \sqrt{\dfrac{2\left( {{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}} \right)}{{{a}^{2}}-{{b}^{2}}}}
2(a2+b2)2a2b2\Rightarrow \sqrt{\dfrac{2{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}{{{a}^{2}}-{{b}^{2}}}}
Taking out square out of the root we get:
(a2+b2)2a2b2\Rightarrow \left( {{a}^{2}}+{{b}^{2}} \right)\sqrt{\dfrac{2}{{{a}^{2}}-{{b}^{2}}}}
Therefore, after simplification, we get the length of the common tangent is equal to, (a2+b2)2a2b2\left( {{a}^{2}}+{{b}^{2}} \right)\sqrt{\dfrac{2}{{{a}^{2}}-{{b}^{2}}}}.
And the equation of common tangent we have already found out as, y=±x±a2b2y=\pm x\pm \sqrt{{{a}^{2}}-{{b}^{2}}}. Hence, the equation of common tangent is y=±x±a2b2y=\pm x\pm \sqrt{{{a}^{2}}-{{b}^{2}}} and length of the common tangent is (a2+b2)2a2b2\left( {{a}^{2}}+{{b}^{2}} \right)\sqrt{\dfrac{2}{{{a}^{2}}-{{b}^{2}}}}.

Note: We must be very careful about the values of m. After taking the root, we must not forget to take the negative values also. The possibility of mistake is by adding the coordinates in the distance formula instead of subtracting the coordinates and ending up with the wrong distance.