Solveeit Logo

Question

Question: Find the equation of the tangent to the ellipse \(7{x^2} + 8{y^2} = 100\) at the point \(\left( {2, ...

Find the equation of the tangent to the ellipse 7x2+8y2=1007{x^2} + 8{y^2} = 100 at the point (2,3)\left( {2, - 3} \right).

Explanation

Solution

Hint: Here, we will proceed by comparing the given equation of the ellipse with the general equation of any ellipse i.e., x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 and then using the general equation of the tangent to the ellipse at any point (x1,y1)\left( {{x_1},{y_1}} \right) on the ellipse which is given by xx1a2+yy1b2=1\dfrac{{x{x_1}}}{{{a^2}}} + \dfrac{{y{y_1}}}{{{b^2}}} = 1.

Complete step-by-step answer:

Given equation of the ellipse is 7x2+8y2=100 (1)7{x^2} + 8{y^2} = 100{\text{ }} \to {\text{(1)}}
Dividing both sides of the equation (1) by 100, we get
7x2+8y2100=100 100 7x2100+8y2100=1 x2(1007)+y2(1008)=1 x2(107)2+y2(1022)2=1 (2)  \Rightarrow \dfrac{{7{x^2} + 8{y^2}}}{{100}} = \dfrac{{100{\text{ }}}}{{100}} \\\ \Rightarrow \dfrac{{7{x^2}}}{{100}} + \dfrac{{8{y^2}}}{{100}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{{\left( {\dfrac{{100}}{7}} \right)}} + \dfrac{{{y^2}}}{{\left( {\dfrac{{100}}{8}} \right)}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{{10}}{{\sqrt 7 }}} \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( {\dfrac{{10}}{{2\sqrt 2 }}} \right)}^2}}} = 1{\text{ }} \to {\text{(2)}} \\\
As we know that the general equation of any ellipse is given by x2a2+y2b2=1 (3)\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1{\text{ }} \to {\text{(3)}}
By comparing the given equation of the ellipse i.e., equation (2) with the general equation of any ellipse i.e., equation (3), we get
a=107a = \dfrac{{10}}{{\sqrt 7 }} and b=1022b = \dfrac{{10}}{{2\sqrt 2 }}
For any ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1, the equation of the tangent at any point (x1,y1)\left( {{x_1},{y_1}} \right) on the ellipse is given by xx1a2+yy1b2=1 (4)\dfrac{{x{x_1}}}{{{a^2}}} + \dfrac{{y{y_1}}}{{{b^2}}} = 1{\text{ }} \to {\text{(4)}}
Since, the point on the given ellipse at which the tangent is to be drawn is (2,3)\left( {2, - 3} \right) so x1=2{x_1} = 2 and y1=3{y_1} = - 3.
By substituting all the values a=107a = \dfrac{{10}}{{\sqrt 7 }}, b=1022b = \dfrac{{10}}{{2\sqrt 2 }}, x1=2{x_1} = 2 and y1=3{y_1} = - 3 in the formula given by equation (4), we will get the required equation of the tangent
x(2)(107)2+y(3)(1022)2=1 2x(1007)3y(1008)=1 14x10024y100=1 14x24y100=1 14x24y=100 7x12y=50  \Rightarrow \dfrac{{x\left( 2 \right)}}{{{{\left( {\dfrac{{10}}{{\sqrt 7 }}} \right)}^2}}} + \dfrac{{y\left( { - 3} \right)}}{{{{\left( {\dfrac{{10}}{{2\sqrt 2 }}} \right)}^2}}} = 1 \\\ \Rightarrow \dfrac{{2x}}{{\left( {\dfrac{{100}}{7}} \right)}} - \dfrac{{3y}}{{\left( {\dfrac{{100}}{8}} \right)}} = 1 \\\ \Rightarrow \dfrac{{14x}}{{100}} - \dfrac{{24y}}{{100}} = 1 \\\ \Rightarrow \dfrac{{14x - 24y}}{{100}} = 1 \\\ \Rightarrow 14x - 24y = 100 \\\ \Rightarrow 7x - 12y = 50 \\\
Therefore, 7x12y=507x - 12y = 50 is the required equation of the tangent to the ellipse 7x2+8y2=1007{x^2} + 8{y^2} = 100 at the point (2,3)\left( {2, - 3} \right).

Note: In this particular problem, the given point (2,3)\left( {2, - 3} \right) is on the ellipse because x=2 and y=-3 is satisfying the given equation of the ellipse i.e., 7x2+8y2=1007{x^2} + 8{y^2} = 100. In the given ellipse b>a because 1022=108\dfrac{{10}}{{2\sqrt 2 }} = \dfrac{{10}}{{\sqrt 8 }} is greater than 107\dfrac{{10}}{{\sqrt 7 }} which represents the major axis of the given ellipse is towards y axis and the minor axis is towards x axis as shown in the figure.