Solveeit Logo

Question

Question: Find the equation of the straight lines touching both \({{x}^{2}}+{{y}^{2}}={{a}^{2}}\) and \({{y}^{...

Find the equation of the straight lines touching both x2+y2=a2{{x}^{2}}+{{y}^{2}}={{a}^{2}} and y2=4ax{{y}^{2}}=4ax .

Explanation

Solution

Hint: Find the centre, radius and slope of the circle and substitute in the equation of tangent with slope.

A tangent line is a line which locally touches a curve at one and only one point
We know that the equation of tangenty=mx+c..................(1)\Rightarrow y=mx+c..................\left( 1 \right)
Which is also the slope intercept formula for a line y=mx+c\Rightarrow y=mx+c
Where mm is the slope of the line
cc is the y-intercept of the line
We have been given the general form of a circle
x2+y2=a2........................(2){{x}^{2}}+{{y}^{2}}={{a}^{2}}........................\left( 2 \right)
Here the centre of the circle is (0,0)\left( 0,0 \right) and
Radius =a2=a=\sqrt{{{a}^{2}}}=a
We know the equation of parabola y2=4ax....................(3)\Rightarrow {{y}^{2}}=4ax....................\left( 3 \right)
The yy- intercept, c=amc=\dfrac{a}{m}
Where aa is the radius of the circle and mm , the slope
\therefore Equation (1)\left( 1 \right) can be written as
y=mx+cy=mx+c
(y=mx+am).................(4)\Rightarrow \left( y=mx+\dfrac{a}{m} \right).................\left( 4 \right)
The equation of tangent to circle with slope mm is given by the formula
y=mx±a1+m2.......................(5)y=mx\pm a\sqrt{1+{{m}^{2}}}.......................\left( 5 \right)
Now comparing both equation (4)&(5)\left( 4 \right)\And \left( 5 \right) and cancelling out like terms
mx+am=mx±a1+m2 am=±a1+m21m=±1+m2 \begin{aligned} & mx+\dfrac{a}{m}=mx\pm a\sqrt{1+{{m}^{2}}} \\\ & \dfrac{a}{m}=\pm a\sqrt{1+{{m}^{2}}}\Rightarrow \dfrac{1}{m}=\pm \sqrt{1+{{m}^{2}}} \\\ \end{aligned}
Now squaring on both sides, we get
(1m)2=(±1+m2)2 1m2=1+m2  \begin{aligned} & {{\left( \dfrac{1}{m} \right)}^{2}}={{\left( \pm \sqrt{1+{{m}^{2}}} \right)}^{2}} \\\ & \dfrac{1}{{{m}^{2}}}=1+{{m}^{2}} \\\ & \\\ \end{aligned}
Cross multiplying the above we get
m2(1+m2)=1 m4+m21=0 \begin{aligned} & {{m}^{2}}\left( 1+{{m}^{2}} \right)=1 \\\ & \Rightarrow {{m}^{4}}+{{m}^{2}}-1=0 \\\ \end{aligned}
\therefore We get (m2+1)(m21)=0\left( {{m}^{2}}+1 \right)\left( {{m}^{2}}-1 \right)=0
We can remove the term (m2+1)\left( {{m}^{2}}+1 \right)
(m21)=0m=±1\therefore \left( {{m}^{2}}-1 \right)=0\Rightarrow m=\pm 1
Now substitute the value of mm in equation (4)\left( 4 \right)
y=mx+am y=±x+a \begin{aligned} & y=mx+\dfrac{a}{m} \\\ & y=\pm x+a \\\ \end{aligned}
Substitute the value of mm in equation(5)\left( 5 \right)

& y=mx\pm a\sqrt{1+{{m}^{2}}} \\\ & y=\pm x\pm \sqrt{2a} \\\ \end{aligned}$$ i.e. we got the required equation tangent. Note: It’s important to remember the $2$ equation of tangent with which this question was solved. $\begin{aligned} & y=mx+c\text{ or }y=mx+\dfrac{a}{m} \\\ & y=mx\pm a\sqrt{1+{{m}^{2}}} \\\ \end{aligned}$ Misplacing this equation will generate wrong answers and the desired equation of tangent won’t happen.