Solveeit Logo

Question

Question: Find the equation of the straight lines passing through the origin and making angle of \({45^\circ }...

Find the equation of the straight lines passing through the origin and making angle of 45{45^\circ } with straight line 3x+y=11\sqrt 3 x + y = 11 .

Explanation

Solution

We will use the formula of the equations of two lines passing through a point (x1,y1)\left( {{x_1},{y_1}} \right) and making angle α\alpha with straight line y= mx +c which is given as-
yy1=m±tanα1mtanα(xx1)\Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right) . Compare the giving straight line equation with the standard equation to find m. Put the given values in the formula and solve to get the equations.

Complete step-by-step answer:
Given the equation of straight lines passes through origin and makes 45{45^\circ }angle with straight line3x+y=11\sqrt 3 x + y = 11.
We can write 3x+y=11\sqrt 3 x + y = 11 as y=3x+11y = - \sqrt 3 x + 11 - (i)
We will use the formula of the equations of two lines passing through a point (x1,y1)\left( {{x_1},{y_1}} \right) and making angle α\alpha with straight line y= mx +c which is given as-
yy1=m±tanα1mtanα(xx1)\Rightarrow y - {y_1} = \dfrac{{m \pm \tan \alpha }}{{1 \mp m\tan \alpha }}\left( {x - {x_1}} \right)
Here since the equation passes through origin(0,0)\left( {0,0} \right)then x1=0{x_1} = 0 and y1=0{y_1} = 0 and also here on comparing equation (i) with standard straight line equation, we get-
\Rightarrowm=3- \sqrt 3 and α=45\alpha = {45^\circ }
On putting the given equation in the formula, we get-
y0=3±tan451(3)tan45(x0)\Rightarrow y - 0 = \dfrac{{ - \sqrt 3 \pm \tan {{45}^ \circ }}}{{1 \mp \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)
We know that tan45=1\tan {45^ \circ } = 1
On putting the value of angle, we get-
y=3±11±(3)x\Rightarrow y = \dfrac{{ - \sqrt 3 \pm 1}}{{1 \pm \left( {\sqrt 3 } \right)}}x
We can also write the above equation as-
y=3+11+3x\Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x and y=3113xy = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x
On rationalizing, we get-
y=(3+1)(13)(1+3)(13)x\Rightarrow y = \dfrac{{\left( { - \sqrt 3 + 1} \right)\left( {1 - \sqrt 3 } \right)}}{{\left( {1 + \sqrt 3 } \right)\left( {1 - \sqrt 3 } \right)}}x and y=(31)(1+3)(13)(1+3)xy = \dfrac{{\left( { - \sqrt 3 - 1} \right)\left( {1 + \sqrt 3 } \right)}}{{\left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)}}x
Now, we know that (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
On applying this formula, we get-
y=(13)2(12(3)2)x\Rightarrow y = \dfrac{{{{\left( {1 - \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x and y=(1+3)2(12(3)2)xy = \dfrac{{ - {{\left( {1 + \sqrt 3 } \right)}^2}}}{{\left( {{1^2} - {{\left( {\sqrt 3 } \right)}^2}} \right)}}x
Now, we know that (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab and(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab.
On applying both the formulae in the above equation, we get-
y=1+323(13)x\Rightarrow y = \dfrac{{1 + 3 - 2\sqrt 3 }}{{\left( {1 - 3} \right)}}x and y=(1+3+23)(13)xy = \dfrac{{ - \left( {1 + 3 + 2\sqrt 3 } \right)}}{{\left( {1 - 3} \right)}}x
On simplifying, we get-
y=4232x\Rightarrow y = \dfrac{{4 - 2\sqrt 3 }}{{ - 2}}x and y=(4+23)2xy = \dfrac{{ - \left( {4 + 2\sqrt 3 } \right)}}{{ - 2}}x
On further simplifying we get-
y=4+232x\Rightarrow y = \dfrac{{ - 4 + 2\sqrt 3 }}{2}x and y=4+232xy = \dfrac{{4 + 2\sqrt 3 }}{2}x
On further solving, we get-
y=(2+3)x\Rightarrow y = \left( { - 2 + \sqrt 3 } \right)x and y=(2+3)xy = \left( {2 + \sqrt 3 } \right)x
On rearranging, we get-
y=(32)xy = \left( {\sqrt 3 - 2} \right)x and y=(2+3)xy = \left( {2 + \sqrt 3 } \right)x
These are the required equations of straight lines passing through the origin and making an angle of 45{45^\circ } with straight line3x+y=11\sqrt 3 x + y = 11.

Note: Here the student can also directly take the different signs from starting step and solve-
y0=3+tan451(3)tan45(x0)\Rightarrow y - 0 = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 - \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right) and y0=3tan451+(3)tan45(x0)y - 0 = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 + \left( { - \sqrt 3 } \right)\tan {{45}^ \circ }}}\left( {x - 0} \right)
On solving, we get-
y=3+tan451+3tan45x\Rightarrow y = \dfrac{{ - \sqrt 3 + \tan {{45}^ \circ }}}{{1 + \sqrt 3 \tan {{45}^ \circ }}}x and y=3tan4513tan45xy = \dfrac{{ - \sqrt 3 - \tan {{45}^ \circ }}}{{1 - \sqrt 3 \tan {{45}^ \circ }}}x
Put the value of angle-
y=3+11+3x\Rightarrow y = \dfrac{{ - \sqrt 3 + 1}}{{1 + \sqrt 3 }}x and y=3113xy = \dfrac{{ - \sqrt 3 - 1}}{{1 - \sqrt 3 }}x
Then solve as given in the above solution.