Solveeit Logo

Question

Question: Find the equation of the set point \(P\), the sum of whose distance from \(A\left( {4,0,0} \right)\)...

Find the equation of the set point PP, the sum of whose distance from A(4,0,0)A\left( {4,0,0} \right) and B(4,0,0)B\left( { - 4,0,0} \right) is equal to 10.

Explanation

Solution

Let the point PP be (x,y,z)\left( {x,y,z} \right). Then, we will calculate distance from P(x,y,z)P\left( {x,y,z} \right) to A(4,0,0)A\left( {4,0,0} \right) and from P(x,y,z)P\left( {x,y,z} \right) to B(4,0,0)B\left( { - 4,0,0} \right) using distance formula. Next, substitute the values in the expression PA+PB=10PA + PB = 10 and then simplify the equation to find an equation of the set of points of PP.

Complete step-by-step answer:
Let the coordinates of point PP be (x,y,z)\left( {x,y,z} \right)
Then, according to the given conditions, we have PA+PB=10PA + PB = 10
Now, we know that distance between 2 points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given as (x2x1)2+(y2y1)2+(z2z1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}}
Then, the distance from P(x,y,z)P\left( {x,y,z} \right) to A(4,0,0)A\left( {4,0,0} \right) will be
\Rightarrow (x4)2+(y0)2+(z0)2=(x4)2+(y)2+(z)2\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}}
The distance from P(x,y,z)P\left( {x,y,z} \right) to B(4,0,0)B\left( { - 4,0,0} \right)
\Rightarrow (x(4))2+(y0)2+(z0)2=(x+4)2+(y)2+(z)2\sqrt {{{\left( {x - \left( { - 4} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2} + {{\left( {z - 0} \right)}^2}} = \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}}
We will substitute these values in the relation PA+PB=10PA + PB = 10
\Rightarrow (x4)2+(y)2+(z)2+(x+4)2+(y)2+(z)2=10\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} + \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10
We will take any one of the terms from LHS to RHS.
\Rightarrow (x4)2+(y)2+(z)2=10((x+4)2+(y)2+(z)2)\sqrt {{{\left( {x - 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} = 10 - \left( {\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)
Now, take square on both sides and apply the formula, {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$$$ {\left( {x - 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} = 100 + {\left( {x + 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\ \Rightarrow {\left( {x - 4} \right)^2} = 100 + {\left( {x + 4} \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\ $ Apply the formulas, {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2abandand{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab $ {x^2} + 16 - 8x = 100 + {x^2} + 16 + 8x - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\ 100 - 16x = \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\ $ We can take 4 common from both LHS and RHS 25 - 4x = \left( {5\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) Again take square on both sides, $ 625 + 16{x^2} + 200x = 25\left( {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} \right) \\\ \Rightarrow 625 + 16{x^2} + 200x = 25\left( {{x^2} + 16 + 8x + {y^2} + {z^2}} \right) \\\ \Rightarrow 9{x^2} + 25{y^2} + 25{z^2} = 225 \\\ $ Thus, the equation of the set of point $P$ is9{x^2} + 25{y^2} + 25{z^2} = 225$$

Note: The distance formula between two points (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) is given as (x2x1)2+(y2y1)2+(z2z1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} . When we have two terms containing variables and square root on one side, then we bring one to the other side and then take square root to avoid unnecessary calculations.