Question
Question: Find the equation of the set point \(P\), the sum of whose distance from \(A\left( {4,0,0} \right)\)...
Find the equation of the set point P, the sum of whose distance from A(4,0,0) and B(−4,0,0) is equal to 10.
Solution
Let the point P be (x,y,z). Then, we will calculate distance from P(x,y,z) to A(4,0,0) and from P(x,y,z) to B(−4,0,0) using distance formula. Next, substitute the values in the expression PA+PB=10 and then simplify the equation to find an equation of the set of points of P.
Complete step-by-step answer:
Let the coordinates of point P be (x,y,z)
Then, according to the given conditions, we have PA+PB=10
Now, we know that distance between 2 points (x1,y1,z1) and (x2,y2,z2) is given as (x2−x1)2+(y2−y1)2+(z2−z1)2
Then, the distance from P(x,y,z) to A(4,0,0) will be
⇒ (x−4)2+(y−0)2+(z−0)2=(x−4)2+(y)2+(z)2
The distance from P(x,y,z) to B(−4,0,0)
⇒ (x−(−4))2+(y−0)2+(z−0)2=(x+4)2+(y)2+(z)2
We will substitute these values in the relation PA+PB=10
⇒ (x−4)2+(y)2+(z)2+(x+4)2+(y)2+(z)2=10
We will take any one of the terms from LHS to RHS.
⇒ (x−4)2+(y)2+(z)2=10−((x+4)2+(y)2+(z)2)
Now, take square on both sides and apply the formula, {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$$$
{\left( {x - 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} = 100 + {\left( {x + 4} \right)^2} + {\left( y \right)^2} + {\left( z \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\
\Rightarrow {\left( {x - 4} \right)^2} = 100 + {\left( {x + 4} \right)^2} - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\
$
Apply the formulas, {\left( {a + b} \right)^2} = {a^2} + {b^2} + 2aband{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
$
{x^2} + 16 - 8x = 100 + {x^2} + 16 + 8x - \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\
100 - 16x = \left( {20\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right) \\\
$
We can take 4 common from both LHS and RHS 25 - 4x = \left( {5\sqrt {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} } \right)
Again take square on both sides,
$
625 + 16{x^2} + 200x = 25\left( {{{\left( {x + 4} \right)}^2} + {{\left( y \right)}^2} + {{\left( z \right)}^2}} \right) \\\
\Rightarrow 625 + 16{x^2} + 200x = 25\left( {{x^2} + 16 + 8x + {y^2} + {z^2}} \right) \\\
\Rightarrow 9{x^2} + 25{y^2} + 25{z^2} = 225 \\\
$
Thus, the equation of the set of point $P$ is9{x^2} + 25{y^2} + 25{z^2} = 225$$
Note: The distance formula between two points (x1,y1,z1) and (x2,y2,z2) is given as (x2−x1)2+(y2−y1)2+(z2−z1)2. When we have two terms containing variables and square root on one side, then we bring one to the other side and then take square root to avoid unnecessary calculations.