Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the equation of the plane which contain the line of intersection of the planes r^.(i^+2j^+3k^)4=0\hat r.(\hat i+2\hat j+3\hat k)-4=0, r.(2i^+j^k^)+5=0\vec r.(2\hat i+\hat j-\hat k)+5=0 and which is perpendicular to the plane r.(5i^+3j^6k^)+8=0.\vec r.(5\hat i+3\hat j-6\hat k)+8=0.

Answer

The equations of the given planes are

r^.(i^+2j^+3k^)4=0\hat r.(\hat i+2\hat j+3\hat k)-4=0 ...(1)

r.(2i^+j^k^)+5=0\vec r.(2\hat i+\hat j-\hat k)+5=0 ...(2)

The equation of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

[r^.(i^+2j^+3k^)4\hat r.(\hat i+2\hat j+3\hat k)-4] + λ[r.(2i^+j^k^)+5\vec r.(2\hat i+\hat j-\hat k)+5] =0= 0

r.[(2λ+1)i^+(λ+2)j^+(3λ)k^]+(5λ4)=0\vec r.[(2λ+1)\hat i+(λ+2)\hat j+(3-λ)\hat k]+(5λ-4)=0 ...(3)

The plane in equation (3) is perpendicular to the plane,

r.(5i^+3j^6k^)+8=0\vec r.(5\hat i+3\hat j-6\hat k)+8=0

5(2λ+1)+3(λ+2)6(3λ)=0∴5(2λ+1)+3(λ+2)-6(3-λ)=0

19λ70λ=719⇒19λ-7-0 ⇒λ=\frac {7}{19}

Substituting λ=7/19 in equation(3), we obtain

r.[3319i^+4519j^+5019k^]4119=0⇒\vec r.[\frac {33}{19}\hat i+\frac {45}{19}\hat j+\frac {50}{19}\hat k]-\frac {41}{19}=0

r.(33i^+45j^+50k^)41=0\vec r.(33\hat i+45\hat j+50 \hat k)-41=0 ...(4)

This is the vector equation of the required plane.

The cartesian equation of this plane can be obtained by substituting r=xi^+yj^+zk^\vec r=x\hat i+y\hat j+z\hat k in equation (3).

(xi^+yj^+zk^).(33i^+45j^+50k^)41=0(x\hat i+y\hat j+z \hat k).(33\hat i+45\hat j+50\hat k)-41=0

33x+45y+50z41=0⇒33x+45y+50z-41=0.