Question
Question: Find the equation of the plane passing through the following points: (2,3,4), (−3,5,1) and (4,−1,2)....
Find the equation of the plane passing through the following points: (2,3,4), (−3,5,1) and (4,−1,2).
Explanation
Solution
Hint: In this question, we use the concept of the equation of Plane. Equation of plane passing through three non collinear points (x1,y1,z1),(x2,y2,z2),(x3,y3,z3) is
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\ {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\\ {{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}} \end{array}} \right| = 0$$ Complete step-by-step answer: Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2). When we have three non collinear points so the equation plane passing through three non collinear points is $$\left| {\begin{array}{*{20}{c}} {x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\\ {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\\ {{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}} \end{array}} \right| = 0$$ Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .\Rightarrow \left| {\begin{array}{{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\