Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the equation of the plane passing through the line of intersection of the planes r.(i^+j^+k^)=1\vec r.(\hat i+\hat j+\hat k)=1 and r.(2i^+3j^k^)+4=0\vec r.(2\hat i+3\hat j-\hat k)+4=0 and parallel to x-axis.

Answer

The given planes are

r.(i^+j^+k^)=1\vec r.(\hat i+\hat j+\hat k)=1

r.(i^+j^+k^)1=0\vec r.(\hat i+\hat j+\hat k)-1=0

r.(2i^+3j^k^)+4=0\vec r.(2\hat i+3\hat j-\hat k)+4=0

The equation of any plane passing through the intersection of these planes is

[r.(i^+j^+k^)1][\vec r.(\hat i+\hat j+\hat k)-1] + λ$$[\vec r.(2\hat i+3\hat j-\hat k)+4] =0= 0

r.[(2λ+1)i^+(3λ+1)j^+(1λ)k^]+(4λ+1)=0\vec r.[(2λ+1)\hat i+(3λ+1)\hat j+(1-λ)\hat k]+(4λ+1)=0 ...(1)

Its direction ratios are (2λ+1), (3λ+1) and (1-λ).

The required plane is parallel to x-axis.

Therefore, its normal is perpendicular to x-axis.

The direction ratios of x-axis are 1, 0 and 0.

1.(2+λ+1)+0(3λ+1)+0(1λ)=0∴1.(2+λ+1)+0(3λ+1)+0(1-λ)=0

2λ+1=0λ=122λ+1=0 ⇒ λ=-\frac 12

Substituting, λ=12λ=-\frac 12 in equation (1), we obtain

r.[12j^+32k^]+(3)=0\vec r.[-\frac 12\hat j+\frac 32\hat k]+(-3)=0

r.(j^3k^)+6=0\vec r.(\hat j-3\hat k)+6=0

Therefore, its cartesian equation is y3z+6=0y-3z+6=0

This is the equation of the required plane.