Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the equation of the plane passing through (a,b,c)and parallel to the plane r\overrightarrow{r}.(i^+j^+k^\hat i+\hat j+\hat k)=2.

Answer

Any plane parallel to the plane r.i^+j^+k^\overrightarrow{r} . \hat i+\hat j+\hat k =2, is of the form

r\overrightarrow{r}.(i^+j^+k^\hat i+\hat j+\hat k) = λ...(1)

The plane passes through the point (a,b,c).

Therefore, the position vector r→ of this point is r\overrightarrow{r}=ai^+bj^+ck^a\hat i+b\hat j+c\hat k

Therefore, equation(1) becomes

(ai^+bj^+ck^a\hat i+b\hat j+c\hat k).(i^+j^+k^\hat i+\hat j+\hat k)=λ

⇒a+b+c=λ

Substituting λ=a+b+c in equation(1), we obtain

r\overrightarrow{r}.(i^+j^+k^\hat i+\hat j+\hat k)=a+b+c...(2)

This is the vector equation of the required plane.

Substitutingr\overrightarrow{r}=xi^+yj^+zk^x\hat i+y\hat j+z\hat k in equation(2), we obtain

(xi^+yj^+zk^x\hat i+y\hat j+z\hat k).(i^+j^+k^\hat i+\hat j+\hat k)=a+b+c

⇒x+y+z=a+b+c.