Solveeit Logo

Question

Question: Find the equation of the locus of a point \( P \) which is equidistant from the straight line \( 3x ...

Find the equation of the locus of a point PP which is equidistant from the straight line 3x4y+2=03x - 4y + 2 = 0 and the origin

Explanation

Solution

Hint : The general coordinate of origin is O(0,0)O(0,0) and let the given point has coordinate P(x,y)P(x,y) .We need to equate the distance of the point PP from the origin OO and the straight line 3x4y+2=03x - 4y + 2 = 0 .After equating we will generate a new equation which will be the solution to the given problem.
Distance between any two points A(x1,y1)A({x_1},{y_1}) and B(x2,y2)B({x_2},{y_2}) is given by d(A,B)=(x1x2)2+(y1y2)2d(A,B) = \sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2}} .
The distance between any line L:ax+by+c=0L:ax + by + c = 0 and a point A(x1,y1)A({x_1},{y_1}) is given by d(L,A)=ax1+by1+ca2+b2d(L,A) = \dfrac{{|a{x_1} + b{y_1} + c|}}{{\sqrt {{a^2} + {b^2}} }}

Complete step-by-step answer :
We are given that P(x,y)P(x,y) is equidistant from origin and the straight line 3x4y+2=03x - 4y + 2 = 0 .
The distance between Origin O(0,0)O(0,0) and the point P(x,y)P(x,y) is:
d(O,P)=(0x)2+(0y)2d(O,P) = \sqrt {{{(0 - x)}^2} + {{(0 - y)}^2}}
Since 00 subtracted from any number gives us the same result we can simplify the above equation as:
d(O,P)=(x)2+(y)2d(O,P) = \sqrt {{{(x)}^2} + {{(y)}^2}} ------(1)
Again the distance between the line L:3x4y+2=0L:3x - 4y + 2 = 0 and the point P(x,y)P(x,y) is:
d(L,P)=3x4y+232+(4)2d(L,P) = \dfrac{{|3x - 4y + 2|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} ------(2)
According to the question:
d(L,P)=d(O,P)d(L,P) = d(O,P)
On substituting the values from (1) and (2) we get-
3x4y+232+(4)2=(x)2+(y)2\dfrac{{|3x - 4y + 2|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = \sqrt {{{(x)}^2} + {{(y)}^2}}
Squaring the above equation on both sides:
3x4y+22(32+(4)2)2=((x)2+(y)2)2\dfrac{{|3x - 4y + 2{|^2}}}{{{{(\sqrt {{3^2} + {{( - 4)}^2}} )}^2}}} = {(\sqrt {{{(x)}^2} + {{(y)}^2}} )^2}
3x4y+2232+(4)2=x2+y2\Rightarrow \dfrac{{|3x - 4y + 2{|^2}}}{{{3^2} + {{( - 4)}^2}}} = {x^2} + {y^2}
On cross multiplication we get:
3x4y+22=(x2+y2)(32+(4)2)|3x - 4y + 2{|^2} = ({x^2} + {y^2})({3^2} + {( - 4)^2})
(3x4y+2)2=(x2+y2)(32+(4)2)\Rightarrow {(3x - 4y + 2)^2} = ({x^2} + {y^2})({3^2} + {( - 4)^2}) [ a2=a2\because |a{|^2} = {a^2} ]
(3x4y+2)×(3x4y+2)=(x2+y2)(9+16)\Rightarrow (3x - 4y + 2) \times (3x - 4y + 2) = ({x^2} + {y^2})(9 + 16)
(3x4y+2)×(3x4y+2)=(x2+y2)(25)\Rightarrow (3x - 4y + 2) \times (3x - 4y + 2) = ({x^2} + {y^2})(25)
3x(3x4y+2)4y(3x4y+2)+2(3x4y+2)=(x2+y2)(25)\Rightarrow 3x(3x - 4y + 2) - 4y(3x - 4y + 2) + 2(3x - 4y + 2) = ({x^2} + {y^2})(25)
(9x212xy+6x)+(12xy+16y28y)+(6x8y+4)=(x2+y2)(25)\Rightarrow (9{x^2} - 12xy + 6x) + ( - 12xy + 16{y^2} - 8y) + (6x - 8y + 4) = ({x^2} + {y^2})(25)
9x2+16y212xy12xy+6x+6x8y8y+4=(x2+y2)(25)\Rightarrow 9{x^2} + 16{y^2} - 12xy - 12xy + 6x + 6x - 8y - 8y + 4 = ({x^2} + {y^2})(25)
9x2+16y224xy+12x16y+4=25x2+25y2\Rightarrow 9{x^2} + 16{y^2} - 24xy + 12x - 16y + 4 = 25{x^2} + 25{y^2}
25x2+25y2(9x2+16y224xy+12x16y+4)=0\Rightarrow 25{x^2} + 25{y^2} - (9{x^2} + 16{y^2} - 24xy + 12x - 16y + 4) = 0
25x29x2+25y216y2+24xy12x+16y4=0\Rightarrow 25{x^2} - 9{x^2} + 25{y^2} - 16{y^2} + 24xy - 12x + 16y - 4 = 0
16x2+9y2+24xy12x+16y4=0\Rightarrow 16{x^2} + 9{y^2} + 24xy - 12x + 16y - 4 = 0
Therefore, the locus of the point PP which is 16x2+9y2+24xy12x+16y4=016{x^2} + 9{y^2} + 24xy - 12x + 16y - 4 = 0

Note : Here after substituting all the values we got a linear equation in 2 variables. Simplify the equation by adding coefficients of like terms one by one to avoid errors in calculating which may lead to a different equation. We take P(x,y)P(x,y) because the locus is set of all points that satisfy a condition equidistant from origin and the line in this question).