Solveeit Logo

Question

Mathematics Question on Hyperbola

Find the equation of the hyperbola satisfying the give conditions: Foci (0, ±10±\sqrt{10}), passing through (2, 3)

Answer

Foci (0, ±10±\sqrt{10}) and passing through (2, 3)
Here, the foci are on the y-axis.
Therefore, the equation of the hyperbola is of the form y2a2x2b2=1\frac{y^2}{a^2} –\frac{ x^2}{b^2} = 1

Since the foci are(±10,0),c=10 (±\sqrt{10}, 0), c = \sqrt{10}

We know that a2\+b2=c2a^2 \+ b^2 = c^2
b2=10a2..(1)∴ b^2 = 10 – a^2 ………….. (1)

Since the hyperbola passes through point (2, 3),

9a24b2=1(2)\frac{9}{a^2} – \frac{4}{b^2} = 1 … (2)
From equations (1) and (2), we obtain

9a24(10a2)=1\frac{9}{a^2} – \frac{4}{(10-a^2)} = 1

9(10a2)4a2=a2(10a2)⇒ 9(10 – a^2) – 4a^2 = a^2(10 –a^2)

909a24a2=10a2a4⇒ 90 – 9a^2 – 4a^2 = 10a^2 – a^4

a423a2\+90=0⇒ a^4 – 23a^2 \+ 90 = 0

a418a25a2\+90=0⇒ a^4 – 18a^2 – 5a^2 \+ 90 = 0

a2(a218)5(a218)=0⇒ a^2(a^2 -18) -5(a^2 -18) = 0

(a218)(a25)=0⇒ (a^2 – 18) (a^2 -5) = 0

a2=18⇒ a^2 = 18 or 55

In hyperbola, c>a,i.e.,c2>a2c > a, i.e., c^2 > a^2

a2=5∴ a^2 = 5
b2=10a2=105=5⇒ b^2 = 10 – a^2= 10 – 5= 5

Thus, the equation of the hyperbola is y25x25=1\frac{y^2}{5} – \frac{x^2}{5} = 1