Solveeit Logo

Question

Mathematics Question on Hyperbola

Find the equation of the hyperbola satisfying the give conditions: Vertices (±7, 0), e=43e = \frac{4}{3}

Answer

Vertices (±7, 0), e=43e =\frac{ 4}{3}
Here, the vertices are on the x-axis.
Therefore, the equation of the hyperbola is of the form x2a2y2b2=1.\frac{x^2}{a^2} –\frac{ y^2}{b^2} = 1.
Since the vertices are (±7, 0), a = 7.

It is given that e=43e =\frac{ 4}{3}

ca=43[e=ca]∴ \frac{c}{a} = \frac{4}{3} [e=\frac{c}{a}]

3c=4a⇒ 3c = 4a
3c=4(7)⇒ 3c = 4(7)

c=283⇒ c = \frac{28}{3}

We know that a2\+b2=c2 a^2 \+ b^2 = c^2

72\+b2=(283)27^2 \+ b^2 = (\frac{28}{3})^2

b2=784949b^2 = \frac{784}{9} – 49

=(784441)9=\frac{ (784 – 441)}{9}

=3439= \frac{343}{9}

Thus, the equation of the hyperbola is x2499y2343=1\frac{x^2}{49} – \frac{9y^2}{343} = 1