Solveeit Logo

Question

Question: Find the equation of the ellipse which passes through the point \(\left( { - 3,1} \right)\) and ecce...

Find the equation of the ellipse which passes through the point (3,1)\left( { - 3,1} \right) and eccentricity 25\dfrac{{\sqrt 2 }}{5} , with x-axis and its major axis and center at the origin.

Explanation

Solution

Hint : We know the equation of ellipse passes through points (x,y)(x,y) and center at origin is x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 . Given the points (x,y)=(3,1)(x,y) = ( - 3,1) and eccentricity e=25e = \dfrac{{\sqrt 2 }}{5} . Using this we find the values of a2{a^2} and b2{b^2} . Substituting this in the equation of the ellipse we get the required solution. (Remember the eccentricity of the ellipse).

Complete step-by-step answer:

Equation of ellipse with center at origin is x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 --- (1)

Given, the points (x,y)=(3,1)(x,y) = ( - 3,1) . Eccentricity e=25e = \dfrac{{\sqrt 2 }}{5} .

We know the eccentricity of an ellipse is e=a2b2a2\Rightarrow e = \sqrt {\dfrac{{{a^2} - {b^2}}}{{{a^2}}}} .

a2b2a2=25 \Rightarrow \sqrt {\dfrac{{{a^2} - {b^2}}}{{{a^2}}}} = \dfrac{{\sqrt 2 }}{5}

Squaring on both side,

(a2b2a2)2=(25)2 \Rightarrow {\left( {\sqrt {\dfrac{{{a^2} - {b^2}}}{{{a^2}}}} } \right)^2} = {\left( {\dfrac{{\sqrt 2 }}{5}} \right)^2}

a2b2a2=225 \Rightarrow \dfrac{{{a^2} - {b^2}}}{{{a^2}}} = \dfrac{2}{{25}}

Cross multiplying we get,

25(a2b2)=2a2 \Rightarrow 25({a^2} - {b^2}) = 2{a^2}

25a225b2=2a2 \Rightarrow 25{a^2} - 25{b^2} = 2{a^2}

Separating a and b terms,

25a22a2=25b2 \Rightarrow 25{a^2} - 2{a^2} = 25{b^2}

23a2=25b2 \Rightarrow 23{a^2} = 25{b^2}

Equating for a2{a^2} , we get,

a2=25b223 \Rightarrow {a^2} = \dfrac{{25{b^2}}}{{23}} . ---- (2)

We need to find the value of a2{a^2} and b2{b^2} , and substitute the value of a2{a^2} in equation (1) and (x,y)=(3,1)(x,y) = ( - 3,1) .

We get

(3)2a2+12b2=1 \Rightarrow \dfrac{{{{( - 3)}^2}}}{{{a^2}}} + \dfrac{{{1^2}}}{{{b^2}}} = 1

9a2+1b2=1 \Rightarrow \dfrac{9}{{{a^2}}} + \dfrac{1}{{{b^2}}} = 1

Taking L.C.M and simplifying

9b2+a2a2b2=1 \Rightarrow \dfrac{{9{b^2} + {a^2}}}{{{a^2}{b^2}}} = 1

Cross multiplication,

9b2+a2=a2b2 \Rightarrow 9{b^2} + {a^2} = {a^2}{b^2}

Substitute, a2=25b223{a^2} = \dfrac{{25{b^2}}}{{23}} . We get,

9b2+25b223=25b223b2 \Rightarrow 9{b^2} + \dfrac{{25{b^2}}}{{23}} = \dfrac{{25{b^2}}}{{23}}{b^2}

Taking L.C.M in the left hand side,

207b2+25b223=2523b4 \Rightarrow \dfrac{{207{b^2} + 25{b^2}}}{{23}} = \dfrac{{25}}{{23}}{b^4}

232b223=25b423 \Rightarrow \dfrac{{232{b^2}}}{{23}} = \dfrac{{25{b^4}}}{{23}}

Canceling 23 on both sides,

232b2=25b4 \Rightarrow 232{b^2} = 25{b^4}

Divide by b2{b^2} on both side and rearranging, we get

b2=23225 \Rightarrow {b^2} = \dfrac{{232}}{{25}} .

Now to find a2{a^2} in substitute in equation (2)

a2=2523×23225 \Rightarrow {a^2} = \dfrac{{25}}{{23}} \times \dfrac{{232}}{{25}}

a2=23223 \Rightarrow {a^2} = \dfrac{{232}}{{23}}

Now to find the equation of ellipse substituting a2{a^2} and b2{b^2} values in x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 . We get

x2(23223)+y2(23225)=1\dfrac{{{x^2}}}{{\left( {\dfrac{{232}}{{23}}} \right)}} + \dfrac{{{y^2}}}{{\left( {\dfrac{{232}}{{25}}} \right)}} = 1

Further simplification,

23x2232+25y2232=1 \Rightarrow \dfrac{{23{x^2}}}{{232}} + \dfrac{{25{y^2}}}{{232}} = 1

23x2+25y2=232 \Rightarrow 23{x^2} + {25y^2} = 232 Is the required equation.

So, the correct answer is “ 23x2+25y2=232 23{x^2} + {25y^2} = 232 .

**

**
**

Note** : In above all we did is using the eccentricity converting the a2{a^2} term into b2{b^2} or we can also convert b2{b^2} into a2{a^2} . So that we can find the value of one term easily and then the other. While finding the equation of ellipse do not substitute the value of x and y (points). Remember the formula of eccentricity of the ellipse.