Solveeit Logo

Question

Mathematics Question on Differential equations

Find the equation of the curve passing through the point (0,π4)(0,\frac \pi4) whose differential equation is, sin xcos y dx+cos xsin y dy=0sin\ x cos \ y\ dx+cos\ xsin\ y\ dy=0

Answer

The differential equation of the given curve is:

sin xcos y dx+cos xsin y dy=0sin\ x cos \ y\ dx+cos\ xsin\ y\ dy=0

sin xcos y dx+cos xsin y dycos xcps y=0\frac {sin\ x cos \ y\ dx+cos\ xsin\ y\ dy}{cos\ x cps\ y}=0

tan x dx+tan y dy=0tan\ x\ dx+tan \ y\ dy=0

Integrating both sides, we get:

log (sec x)+log (sec y)=log Clog\ (sec\ x)+log\ (sec\ y)=log\ C

log (sec x.sec y)=log Clog\ (sec\ x.sec\ y)=log\ C

sec x.sec y=Csec\ x.sec\ y=C ...(1)

The curve passes through point (0,π4)(0,\frac \pi4).

1×2=C∴1×\sqrt2=C

C=2C=\sqrt 2

On substituting C=2C=\sqrt 2 in equation (1), we get:

sec x.sec y=2sec\ x.sec \ y=\sqrt 2

secx.1cos y=2secx.\frac {1}{cos\ y}=\sqrt 2

cos y=sec x2cos\ y=\frac {sec\ x}{\sqrt 2}

Hence, the required equation of the curve is cos y=sec x2cos\ y=\frac {sec\ x}{\sqrt 2}.