Solveeit Logo

Question

Mathematics Question on Circle

Find the equation of the circle with the center (12,14) (\dfrac{1}{2},\dfrac{1}{4}) and radius 112\dfrac{1}{12}

Answer

The equation of a circle with center (h, k) and radius r is given as (xh)2+(yk)2=r2(x- h)^2 + (y - k)^2 = r^2

Given that the center (h,k)=(12,14)(h, k) = (\dfrac{1}{2}, \dfrac{1}{4}) and radius (r)=112(r) =\dfrac{1}{12}.

Therefore, the equation of the circle is

(x12)2+(y14)2=(112)2 (x -\dfrac{1}{2})^2+ (y -\dfrac{1}{4})^2= (\dfrac{1}{12})^2

x2+y22.x.122.y.14+14+116=1144⇒x^2+y^2-2.x.\dfrac{1}{2}-2.y.\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{16}=\dfrac{1}{144}

x2+y22.x.122.y.14+14+1161144=0⇒x^2+y^2-2.x.\dfrac{1}{2}-2.y.\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{144}=0

144x2144x+144y2+3672y+91=0⇒144x^2-144x+144y^2+36-72y+9-1=0

36x2+36y236x18y+11=0⇒36x^2+36y^2-36x-18y+11=0 (Ans.)