Solveeit Logo

Question

Mathematics Question on Circle

Find the equation of the circle passing through the points (2, 3) and (-1, 1) and whose center is on the line x-3y - 11 = 0

Answer

Let the equation of the required circle be (xh)2+(yk)2=r2.(x - h)^2 + (y - k)^2 = r^2.
Since the circle passes through points (2,3)(2, 3) and (1,1)(-1, 1)
(2h)2+(3k)2=r2(1)(2 - h)^2 + (3 - k)^2 = r^2 … (1)
(1h)2+(1k)2=r2(2)(-1 - h)^2 + (1 - k)^2 = r^2 … (2)
Since the center (h, k) of the circle lies on the line
x3y11=0,x - 3y - 11 = 0,
h3k=11(3)h - 3k = 11 … (3)
From equations (1) and (2), we obtain
(2h)2+(3k)2=(1h)2+(1k)2(2 - h)^2 + (3 - k)^2 = (-1 - h)^2 + (1 - k) ^2
44h+h2+96k+k2=1+2h+h2+12k+k2⇒ 4 - 4h + h ^2 + 9 - 6k + k^2 = 1 + 2h + h ^2 + 1 - 2k + k ^2
44h+96k=1+2h+12k⇒ 4 - 4h + 9 - 6k = 1 + 2h + 1 - 2k
6h+4k=11(4)⇒ 6h + 4k = 11 … (4)
On solving equations (3) and (4), we obtain h=7/2h = 7/2 and k=5/2k = -5/2
On substituting the values of h and k in equation (1), we obtain
(272)2\+(3+52)2=r2(2 –\frac{ 7}{2})^2 \+ (3 + \frac{5}{2})^2 = r^2
[[(47)22]\+[(6+5)22]=r2[\frac{(4-7)}{2}^2] \+ [\frac{(6+5)}{2}^2] = r^2
(32)2\+(112)2=r2(-\frac{3}{2})^2 \+ (\frac{11}{2})^2 = r^2
\frac{9}{4} + \frac{121}{4} = r^2$$$ \frac{130}{4} = r^2Thus,theequationoftherequiredcircleis Thus, the equation of the required circle is (x – \frac{7}{2})^2+ (y + \frac{5}{2})^2= \frac{130}{4} 4x^2-28x + 49 +4y^2+ 20y + 25 =130 4x^2 +4y^2-28x + 20y – 56 = 0 4(x^2+y^2-7x + 5y – 14) = 0 x^2 + y^2 – 7x + 5y – 14 = 0Theequationoftherequiredcircleis ∴ The equation of the required circle isx^2 + y^2 – 7x + 5y – 14 = 0$