Solveeit Logo

Question

Question: Find the equation of the circle passing through \( \left( 0,0 \right) \) and making intercepts \( a ...

Find the equation of the circle passing through (0,0)\left( 0,0 \right) and making intercepts aa and bb on the coordinate axes.

Explanation

Solution

We denote the centre of the circle as C(h,k)C\left( h,k \right) and radius OA=rOA=r where O is the origin. We use given intercepts a,ba,b and find the coordinates of A,BA,B where xx- and yy- axis cut the circle excluding O. We put the coordinates of A,B,OA,B,O in the equation of the circle in centre-radius to express h,k,r2h,k,{{r}^{2}} in terms of a,ba,b . We put the expressions in a,ba,b centre-radius equation of circle to get the required.

Complete step-by-step answer:
Let us denote the centre of the given circle in the question as C(h,k)C\left( h,k \right) and the radius as OA=rOA=r where O is the origin. Let xx- axis cut circle excluding the origin at A and yy- axis cut circle excluding the origin at B . So we have obtained the xx- intercept OA and yy- intercept OB. We are given i the question that aa and bb are length of the intercept. We assign
OA=a,OB=bOA=a,OB=b
So the co-ordinates of A and B are given by A(a,0),B(0,b)A\left( a,0 \right),B\left( 0,b \right) . $$$$

We write the equation of the circle in centre radius form as
(xh)2+(yk)2=r2......(1){{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{r}^{2}}......\left( 1 \right)
The circle (1) passes through origin O(0,0)O\left( 0,0 \right) and so O(0,0)O\left( 0,0 \right) will satisfy equation of circle (1). So we have,

& {{\left( 0-h \right)}^{2}}+{{\left( 0-k \right)}^{2}}={{r}^{2}}. \\\ & \Rightarrow {{h}^{2}}+{{k}^{2}}={{r}^{2}}......\left( 2 \right) \\\ \end{aligned}$$ The circle (1) passes through origin $ A\left( a,0 \right) $ and so $ A\left( a,0 \right) $ will satisfy equation of circle (1). So we have, $$\begin{aligned} & {{\left( a-h \right)}^{2}}+{{\left( 0-k \right)}^{2}}={{r}^{2}}. \\\ & \Rightarrow {{a}^{2}}-2ah+{{h}^{2}}+{{k}^{2}}={{r}^{2}} \\\ & \Rightarrow {{a}^{2}}-2ah+{{r}^{2}}={{r}^{2}}\left( \because {{h}^{2}}+{{k}^{2}}={{r}^{2}} \right) \\\ & \Rightarrow a\left( a-2h \right)=0 \\\ \end{aligned}$$ So we have $ a=0 $ or $ h=\dfrac{a}{2} $ . If $ a=0 $ the point is on $ x- $ axis and we reject the value. So the $ x- $ coordinate of the centre is $ h=\dfrac{a}{2} $ . The circle (1) passes through origin $ B\left( 0,b \right) $ and so $ A\left( 0,b \right) $ will satisfy equation of circle (1). So we have, $$\begin{aligned} & {{\left( 0-h \right)}^{2}}+{{\left( b-k \right)}^{2}}={{r}^{2}}. \\\ & \Rightarrow {{h}^{2}}+{{b}^{2}}-2kb+{{k}^{2}}={{r}^{2}} \\\ & \Rightarrow {{b}^{2}}-2kb+{{r}^{2}}={{r}^{2}}\left( \because {{h}^{2}}+{{k}^{2}}={{r}^{2}} \right) \\\ & \Rightarrow b\left( b-2k \right)=0 \\\ \end{aligned}$$ So we have $ b=0 $ or $ k=\dfrac{b}{2} $ . If $ b=0 $ the point is on $ y- $ axis and we reject the value. So the $ y- $ coordinate of the centre is $ k=\dfrac{b}{2} $ . Let us put the value of $ h=\dfrac{a}{2},k=\dfrac{b}{2} $ in the equation (2) and find $ {{r}^{2}} $ . We have $$\begin{aligned} & {{\left( \dfrac{a}{2} \right)}^{2}}+{{\left( \dfrac{b}{2} \right)}^{2}}={{r}^{2}} \\\ & \Rightarrow {{r}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{4} \\\ \end{aligned}$$ We put the obtained values of $ h,k,{{r}^{2}} $ in equation(1) and have $$\begin{aligned} & {{\left( x-\dfrac{a}{2} \right)}^{2}}+{{\left( y-\dfrac{b}{2} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{4} \\\ & \Rightarrow {{x}^{2}}-ax+\dfrac{{{a}^{2}}}{4}+{{y}^{2}}-bx+\dfrac{{{b}^{2}}}{4}=\dfrac{{{a}^{2}}+{{b}^{2}}}{4} \\\ & \Rightarrow {{x}^{2}}-ax+{{y}^{2}}-bx+\dfrac{{{a}^{2}}+{{b}^{2}}}{4}=\dfrac{{{a}^{2}}+{{b}^{2}}}{4} \\\ & \Rightarrow {{x}^{2}}-ax+{{y}^{2}}-bx=0 \\\ \end{aligned}$$ The above equation is the required equation of the circle. $$$$ **Note:** We can also proceed to find the equation of the circle with $ x- $ intercept as $ b $ and h $ y- $ intercept as $ a $ and get the equation as $ {{x}^{2}}-bx+{{y}^{2}}-ay=0 $ . The general equation of circle in two variables is given by $ {{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0 $ for real numbers $ f,g,c $ which simultaneously cannot be zero and $ {{g}^{2}}+{{f}^{2}} > c $ .