Solveeit Logo

Question

Question: Find the equation of the bisector of the angle \(A\) of the triangle whose vertices are \(A\left( {4...

Find the equation of the bisector of the angle AA of the triangle whose vertices are A(4,3)A\left( {4,3} \right), B(0,0)B\left( {0,0} \right) and C(2,3)C\left( {2,3} \right).

Explanation

Solution

We will first draw the diagram for the corresponding conditions. Let AMAM be the angle bisector angle AA. Then, find the coordinates of MM using the property of angle bisector and section formula. Then, find the equation of line AMAM from the coordinates of AA and MM.

Complete step by step solution: We are given that the coordinates of vertices of a triangle are A(4,3)A\left( {4,3} \right), B(0,0)B\left( {0,0} \right) and C(2,3)C\left( {2,3} \right)
Let AMAM be the angle bisector of angle AA
We will first draw the corresponding figure.

Since AMAM is an angle bisector, then AMAM divides the opposite sides of the triangle into two segments which are proportional to the distance of the other two sides.
That is, AMAM divides BCBC in the ratio of AB:ACAB: AC
Hence, AB:AC=AM:MCAB:AC = AM:MC
Now, let us find the distance ABAB and the distance ACAC using the distance formula,
If (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are coordinates of two points, then distance between them is calculated as (x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
AB=(40)2+(30)2 AB=16+9 AB=25 AB=5  AB = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \\\ \Rightarrow AB = \sqrt {16 + 9} \\\ \Rightarrow AB = \sqrt {25} \\\ \Rightarrow AB = 5 \\\
Similarly the distance of ACAC is,
AC=(42)2+(33)2 AC=4+0 AC=4 AC=2  AC = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \\\ \Rightarrow AC = \sqrt {4 + 0} \\\ \Rightarrow AC = \sqrt 4 \\\ \Rightarrow AC = 2 \\\
Thus, the ratio of AB:ACAB: AC is 5:2 which is also equal to AM:MCAM: MC.
We shall now find the coordinates of MM using section formula,
Section formula states that, if (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are coordinates of two points and they are divided by the point (x3,y3)\left( {{x_3},{y_3}} \right) in m:nm:n,

then the coordinates of (x3,y3)\left( {{x_3},{y_3}} \right) are (x3,y3)=(mx2+nx1m+n,my2+ny1m+n)\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)
Therefore, the coordinates of MM can be calculated as,
M=((5)2+(2)05+2,(5)3+(2)05+2) M=(107,157)  M = \left( {\dfrac{{\left( 5 \right)2 + \left( 2 \right)0}}{{5 + 2}},\dfrac{{\left( 5 \right)3 + \left( 2 \right)0}}{{5 + 2}}} \right) \\\ M = \left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right) \\\
Next, we will find the equation of line AMAM using the points A(4,3)A\left( {4,3} \right) and (107,157)\left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right)
If (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are coordinates of two points, then the equation of line is given as,
yy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)
Therefore, equation of AMAMis
y157=31574107(x107) y157=67187(x107) y157=13(x107) 3y457=x107 3yx457+107=0 3yx357=0 3yx5=0  y - \dfrac{{15}}{7} = \dfrac{{3 - \dfrac{{15}}{7}}}{{4 - \dfrac{{10}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\\ \Rightarrow y - \dfrac{{15}}{7} = \dfrac{{\dfrac{6}{7}}}{{\dfrac{{18}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\\ \Rightarrow y - \dfrac{{15}}{7} = \dfrac{1}{3}\left( {x - \dfrac{{10}}{7}} \right) \\\ \Rightarrow 3y - \dfrac{{45}}{7} = x - \dfrac{{10}}{7} \\\ \Rightarrow 3y - x - \dfrac{{45}}{7} + \dfrac{{10}}{7} = 0 \\\ \Rightarrow 3y - x - \dfrac{{35}}{7} = 0 \\\ \Rightarrow 3y - x - 5 = 0 \\\
Hence, the equation of the bisector of the angle AA of the triangle whose vertices are A(4,3)A\left( {4,3} \right), B(0,0)B\left( {0,0} \right) and C(2,3)C\left( {2,3} \right) is 3yx5=03y - x - 5 = 0.

Note: Section formula is used to find the coordinates of the point when the point divides the line joined by two points in a certain ratio. If the point (x3,y3)\left( {{x_3},{y_3}} \right) divides the line internally joined by the points, (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right), then the coordinates of the point is given as (x3,y3)=(mx2+nx1m+n,my2+ny1m+n)\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right). But, if the point (x3,y3)\left( {{x_3},{y_3}} \right) divides the line externally, then the coordinates of the point is given as (x3,y3)=(mx2nx1mn,my2ny1mn)\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} - n{x_1}}}{{m - n}},\dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right)