Solveeit Logo

Question

Question: Find the equation of tangent and normal for the given curves at point P. i) \({x^2} + {y^2} + xy =...

Find the equation of tangent and normal for the given curves at point P.
i) x2+y2+xy=3{x^2} + {y^2} + xy = 3 at P ( 1 , 1 )
ii) xy=1\sqrt x - \sqrt y = 1 at P ( 9 , 4 )

Explanation

Solution

Hint : Tangent and normal on the given point can be calculated using following steps:
i) Differentiate both sides with respect to x
ii) Substitute the given coordinates ( x , y ) in the equation obtained in i)
iii) Let dydx=m\dfrac{{dy}}{{dx}} = m which will give us the slope.
Slope of normal =1Slope of tangent Slope{\text{ }}of{\text{ }}normal{\text{ }} = - \dfrac{1}{{Slope{\text{ }}of{\text{ tangent }}}} = 1m - \dfrac{1}{m}
Required equation of normal or tangent :
(yy1)=m(xx1)\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right) where,
x1{x_1} and y1{y_1} are the coordinates of the point and m is the slope.

Complete step-by-step answer :

Equation of normal or tangent is given as:
(yy1)=m(xx1)\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right) __________ (1)
i) Given equation is x2+y2+xy=3{x^2} + {y^2} + xy = 3
Differentiating both sides with respect to x :
2x+2ydydx+y(1)+xdydx=0\Rightarrow 2x + 2y\dfrac{{dy}}{{dx}} + y(1) + x\dfrac{{dy}}{{dx}} = 0
Let dydx=m\dfrac{{dy}}{{dx}} = m (Slope), the equation becomes:
\Rightarrow 2x + 2ym + y + mx = 0
Now given point is P ( 1 , 1 )
comparing it with ( x , y ); x = 1 and y = 1
By substitution, we get:
\Rightarrow 2.(1) + 2.(1).m + (1).(1) + m.(1) = 0
3m + 3 = 0
3m = -3
m = -1
From (1), we have:
(yy1)=m(xx1)\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)
y1{y_1} = 1 [coordinates of P = (1 , 1) ]
x1{x_1} = 1
m = -1
Substituting, we get:
\Rightarrow (y – 1) = -1 (x – 1)
y – 1 = -x + 1
x + y – 2 = 0 [rearranging]
Therefore, the equation of the tangent for the curve is x + y – 2 = 0
For normal, the slope is :
1m- \dfrac{1}{m} = 1(1) - \dfrac{1}{{( - 1)}}
m = 1 for same pair of coordinates, thus substituting the values, we get:
(y – 1) = 1 (x – 1)
y – 1 = x – 1
x – y = 0 [rearranging]
Therefore, the equation of the normal for the curve is x -y = 0

ii) Given equation is xy=1\sqrt x - \sqrt y = 1
It can be written as: (x)12+(y)12=1{(x)^{\dfrac{1}{2}}} + {(y)^{\dfrac{1}{2}}} = 1
Differentiating both sides with respect to x :
12(x)12+12(y)12dydx=0\Rightarrow \dfrac{1}{2}{(x)^{ - \dfrac{1}{2}}} + \dfrac{1}{2}{(y)^{ - \dfrac{1}{2}}}\dfrac{{dy}}{{dx}} = 0
Let dydx=m\dfrac{{dy}}{{dx}} = m (Slope), the equation becomes:
12(x)12+12(y)12m=0\Rightarrow \dfrac{1}{2}{(x)^{ - \dfrac{1}{2}}} + \dfrac{1}{2}{(y)^{ - \dfrac{1}{2}}}m = 0
12×1(x)12+12×1(y)12m=0\dfrac{1}{2} \times \dfrac{1}{{{{(x)}^{\dfrac{1}{2}}}}} + \dfrac{1}{2} \times \dfrac{1}{{{{(y)}^{\dfrac{1}{2}}}}}m = 0
Now given point is P ( 9 , 4 )
comparing it with ( x , y ); x = 9 and y = 4
By substitution, we get:
12×1(9)12+12×1(4)12m=0\Rightarrow \dfrac{1}{2} \times \dfrac{1}{{{{(9)}^{\dfrac{1}{2}}}}} + \dfrac{1}{2} \times \dfrac{1}{{{{(4)}^{\dfrac{1}{2}}}}}m = 0
[(9)12=(32)12=3(4)12=(22)12=2]\left[ \because {(9)^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3 {(4)^{\dfrac{1}{2}}} = {\left( {{2^2}} \right)^{\dfrac{1}{2}}} = 2 \right]

12×13+12×12m=0\Rightarrow \dfrac{1}{2} \times \dfrac{1}{3} + \dfrac{1}{2} \times \dfrac{1}{2}m = 0

12×12m=(12×13)m=23 \dfrac{1}{2} \times \dfrac{1}{2}m = - \left( {\dfrac{1}{2} \times \dfrac{1}{3}} \right) m = - \dfrac{2}{3}

From (1), we have:
(yy1)=m(xx1)\left( {y - {y_1}} \right) = m\left( {x - {x_1}} \right)
y1{y_1} = 4 [coordinates of P = (9 , 4) ]
x1{x_1} = 9
m=23m = - \dfrac{2}{3}
Substituting, we get:
(y4)=23(x9)3(y4)=2(x9)3y12=2x+182x+3y30=0 \Rightarrow \left( {y - 4} \right) = - \dfrac{2}{3}\left( {x - 9} \right) 3\left( {y - 4} \right) = - 2\left( {x - 9} \right) 3y - 12 = - 2x + 18 2x + 3y - 30 = 0 [Rearranging]
Therefore, the equation of the tangent for the curve is 2x + 3y – 30 = 0
For normal, the slope is :
$
- \dfrac{1}{m} = - \dfrac{1}{{\left( { - \dfrac{2}{3}} \right)}}

m = \dfrac{3}{2}forsamepairofcoordinates,thussubstitutingthevalues,weget:for same pair of coordinates, thus substituting the values, we get:
\Rightarrow \left( {y - 4} \right) = \dfrac{3}{2}\left( {x - 9} \right)
2\left( {y - 4} \right) = 3\left( {x - 9} \right)
2y - 8 = 3x - 27
3x - 2y - 19 = 0
$ [Rearranging]
Therefore, the equation of the normal for the curve is 3x – 2y – 19 = 0

Note : Points to remember while differentiating:
ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}
Differentiation of a constant = 0
When another quantity is differentiated with respect to the other and the same quantity is differentiated with respect to itself, the cases are:
i) Differentiation of y with respect to x = dydx\dfrac{{dy}}{{dx}}
ii) Differentiation of x with respect to x = dxdx=1\dfrac{{dx}}{{dx}} = 1